Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Gene Ther ; 31(7-8): 422-433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834681

RESUMO

High-altitude pulmonary edema (HAPE) is a deadly form of altitude sickness, and there is no effective treatment for HAPE. Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cell isolated from dental pulp tissues and possess various functions, such as anti-inflammatory and anti-oxidative stress. DPSCs have been used to treat a variety of diseases, but there are no studies on treating HAPE. In this study, Sprague-Dawley rats were exposed to acute low-pressure hypoxia to establish the HAPE model, and SOD1-modified DPSCs (DPSCsHiSOD1) were administered through the tail vein. Pulmonary arterial pressure, lung water content (LWC), total lung protein content of bronchoalveolar lavage fluid (BALF) and lung homogenates, oxidative stress, and inflammatory indicators were detected to evaluate the effects of DPSCsHiSOD1 on HAPE. Rat type II alveolar epithelial cells (RLE-6TN) were used to investigate the effects and mechanism of DPSCsHiSOD1 on hypoxia injury. We found that DPSCs could treat HAPE, and the effect was better than that of dexamethasone treatment. SOD1 modification could enhance the function of DPSCs in improving the structure of lung tissue, decreasing pulmonary arterial pressure and LWC, and reducing the total lung protein content of BALF and lung homogenates, through anti-oxidative stress and anti-inflammatory effects. Furthermore, we found that DPSCsHiSOD1 could protect RLE-6TN from hypoxic injury by reducing the accumulation of reactive oxygen species (ROS) and activating the Nrf2/HO-1 pathway. Our findings confirm that SOD1 modification could enhance the anti-oxidative stress ability of DPSCs through the Nrf2/HO-1 signalling pathway. DPSCs, especially DPSCsHiSOD1, could be a potential treatment for HAPE. Schematic diagram of the antioxidant stress mechanism of DPSCs in the treatment of high-altitude pulmonary edema. DPSCs can alleviate oxidative stress by releasing superoxide dismutase 1, thereby reducing ROS production and activating the Nrf2/HO-1 signalling pathway to ameliorate lung cell injury in HAPE.


Assuntos
Doença da Altitude , Polpa Dentária , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Superóxido Dismutase-1 , Animais , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Doença da Altitude/terapia , Doença da Altitude/metabolismo , Masculino , Células-Tronco/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Edema Pulmonar/metabolismo , Edema Pulmonar/terapia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/metabolismo , Humanos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética
2.
Mol Cell Biochem ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110281

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause destruction of cartilage and bone's extracellular matrix. Bromodomain 4 (BRD4), as a transcriptional and epigenetic regulator, plays a key role in cancer and inflammatory diseases. While, the role of BRD4 in bone destruction in RA has not been extensively reported. Our study aimed to investigate the effect of BRD4 on the bone destruction in RA and, further, its mechanism in the pathogenesis of the disease. In this study, receiving approval from the Ethical Committee of the Affiliated Hospital of Qingdao University, we evaluated synovial tissues from patients with RA and OA for BRD4 expression through advanced techniques such as immunohistochemistry, quantitative real-time PCR (qRT-PCR), and Western blotting. We employed a collagen-induced arthritis (CIA) mouse model to assess the therapeutic efficacy of the BRD4 inhibitor JQ1 on disease progression and bone destruction, supported by detailed clinical scoring and histological examinations. Further, in vitro osteoclastogenesis assays using RAW264.7 macrophages, facilitated by TRAP staining and resorption pit assays, provided insights into the mechanistic effects of JQ1 on osteoclast function. Statistical analysis was rigorously conducted using SPSS, applying Kruskal-Wallis, one-way ANOVA, and Student's t-tests to validate the data. In our study, we found that BRD4 expression significantly increased in the synovial tissues of RA patients and the ankle joints of CIA mice, with JQ1, a BRD4 inhibitor, effectively reducing inflammation, arthritis severity (p < 0.05), and bone erosion. Treatment with JQ1 not only improved bone mass and structural integrity in CIA mice but also downregulated osteoclast-related gene expression and the RANKL/RANK signaling pathway, indicating a suppression of osteolysis. Furthermore, in vitro assays demonstrated that JQ1 markedly inhibited osteoclast differentiation and function, underscoring the pivotal role of BRD4 in osteoclastogenesis and its potential as a target for therapeutic intervention in RA-induced bone destruction. Our study concludes that targeting BRD4 with the inhibitor JQ1 significantly mitigates inflammation and bone destruction in rheumatoid arthritis, suggesting that inhibition of BRD4 may be a potential therapeutic strategy for the treatment of bone destruction in RA.

3.
Water Sci Technol ; 89(7): 1860-1878, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619908

RESUMO

The activated persulfate (PS) process could produce sulfate radical (SO4·-) and rapidly degrade organic pollutants. The application of Fe3O4 as a promising PS activator was limited due to the rapid conversion of Fe2+ to Fe3+ on its surface. Mo4+ on MoS2 surface could be used as a reducing site to convert Fe3+ to Fe2+, but the separation and recovery of MoS2 was complex. In this study, MoS2/Fe3O4 was prepared to accelerate the Fe3+/Fe2+ cycle on Fe3O4 surface and achieved efficient separation of MoS2. The results showed that MoS2/Fe3O4 was more effective for PS activation compared to Fe3O4 or MoS2, with a removal efficiency of 91.8% for 20 mg·L-1 tetracycline (TC) solution under the optimal conditions. Fe2+ and Mo4+ on MoS2/Fe3O4 surface acted as active sites for PS activation with the generation of SO4•-, •OH, •O2-, and 1O2. Mo4+ acted as an electron donor to promote the Fe3+/Fe2+ cycling and thus improved the PS activation capability of MoS2/Fe3O4. The degradation pathways of TC were inferred as hydroxylation, ketylation of dimethylamino group and C-N bond breaking. This study provided a promising activated persulfate-based advanced oxidation process for the efficient degradation of TC by employing MoS2/Fe3O4 as an effective activator.


Assuntos
Molibdênio , Poluentes Químicos da Água , Tetraciclina/análise , Oxirredução , Antibacterianos , Fenômenos Magnéticos , Poluentes Químicos da Água/química
4.
Chem Rev ; 121(23): 14349-14429, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609850

RESUMO

Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.


Assuntos
Engenharia , Micelas , Catálise , Porosidade
5.
BMC Musculoskelet Disord ; 23(1): 571, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701774

RESUMO

BACKGROUND: This study aimed to compare the mid-term clinical and radiographic outcomes between medial-pivotal (MP) insert and double-high (DH) insert used under the cruciate-retaining condition in ADVANCE® total knee arthroplasty (TKA). METHODS: The follow-up was conducted for 158 consecutive patients who underwent unilateral ADVANCE® TKA from January 2011 to April 2014. Eighty-four MP inserts and 74 DH inserts were used under cruciate-retaining conditions. A 1:1 propensity score matching (PSM) analysis was performed between MP inserts and DH inserts to compare the clinical and radiographic outcomes. RESULTS: After a 1:1 PSM, 120 patients (60 pairs) were matched between the MP and DH inserts groups. The baseline demographic parameters and clinical scores were comparable between the two groups. The postoperative clinical outcomes at an averaged 8-year follow-up of both groups were significantly improved. The range of motion (ROM) of the DH group was better than that of the MP group, and equivalent Knee Society Function Score (KSFS) between the two groups was found. However, the Knee Society Score (KSS), Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and Forgotten Joint Score (FJS) of the MP group were found to be significantly superior to those of the DH group. Comparable complication and revision rates were observed between the two groups. The radiographic results were also equally good between MP and DH groups. CONCLUSIONS: Although the mid-term clinical and radiographic outcomes of the DH inserts are fairly good, the clinical scores of the DH group were worse than those of the MP group.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Pontuação de Propensão , Desenho de Prótese , Amplitude de Movimento Articular
6.
Angew Chem Int Ed Engl ; 61(43): e202211307, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36037030

RESUMO

A sulfhydryl monomicelles interfacial assembly strategy is presented for the synthesis of fully exposed single-atom-layer Pt clusters on 2D mesoporous TiO2 (SAL-Pt@mTiO2 ) nanosheets. This synthesis features the introduction of the sulfhydryl group in monomicelles to finely realize the controllable co-assembly process of Pt precursors within ordered mesostructures. The resultant SAL-Pt@mTiO2 shows uniform SAL Pt clusters (≈1.2 nm) anchored in ultrathin 2D nanosheets (≈7 nm) with a high surface area (139 m2 g-1 ), a large pore size (≈25 nm) and a high dispersion (≈99 %). Moreover, this strategy is universal for the synthesis of other SAL metal clusters (Pd and Au) on 2D mTiO2 with high exposure and accessibility. When used as a catalyst for hydrogenation of 4-nitrostyrene, the SAL-Pt@mTiO2 shows a high catalytic activity (TOF up to 2424 h-1 ), 100 % selectivity for 4-aminostyrene, good stability, and anti-resistance to thiourea poisoning under relatively mild conditions (25 °C, 10 bar).

7.
Int Orthop ; 45(11): 2877-2883, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33783585

RESUMO

PURPOSE: The unique medial-pivot (MP) design of ADVANCE® system largely simulates the movement of a normal knee joint and a high mid- and long-term success rate has been reported in limited populations. The aims of this study are to investigate the mid-term clinical outcomes and survivorship based on a large cohort with 1128 cases. METHODS: One thousand seven patients received 1276 ADVANCE® MP TKAs from January 2011 to April 2016 in our institution were retrospectively investigated. The range of motion (ROM), the Knee Society Score (KSS), the Knee Society Function Score (KSFS), the Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and the Forgotten Joint Score (FJS) were used to evaluate clinical outcomes and Kaplan-Meier survival curve was used to calculate the survivorship. RESULTS: In an averaged five year follow-up, the results of 879 patients (1128 knees) were successfully obtained and the clinical outcomes of 1107 knees were recorded. One hundred forty-eight knees (11.6%) were lost to follow-up. Excellent mid-term ROM, KSS, KSFS, and WOMAC score were recorded. A total of 53 complications were identified and most complications were related to the discordance of femoropatellar joint. Taking revision for any reason as end point, the overall survivorship was 99.2% at seven years. When taking all cases lost to follow-up as failures, the survivorship was 83.8% at five years and 50.6% at seven years. CONCLUSION: For MP designs, the intermediate clinical outcomes are good to excellent and the mid-term survivorship related to reasons other than infection is also satisfactory.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Desenho de Prótese , Amplitude de Movimento Articular , Estudos Retrospectivos , Sobrevivência , Resultado do Tratamento
8.
Angew Chem Int Ed Engl ; 59(8): 3287-3293, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31821658

RESUMO

A universal sequential synthesis strategy in aqueous solution is presented for highly uniform core-shell structured photocatalysts, which consist of a metal sulfide light absorber core and a metal sulfide co-catalyst shell. We show that the sequential chemistry can drive the formation of unique core-shell structures controlled by the constant of solubility product of metal sulfides. A variety of metal sulfide core-shell structures have been demonstrated, including CdS@CoSx , CdS@MnSx , CdS@NiSx , CdS@ZnSx , CuS@CdS, and more complexed CdS@ZnSx @CoSx . The obtained strawberry-like CdS@CoSx core-shell structures exhibit a high photocatalytic H2 production activity of 3.92 mmol h-1 and an impressive apparent quantum efficiency of 67.3 % at 420 nm, which is much better than that of pure CdS nanoballs (0.28 mmol h-1 ), CdS/CoSx composites (0.57 mmol h-1 ), and 5 %wt Pt-loaded CdS photocatalysts (1.84 mmol h-1 ).

9.
J Am Chem Soc ; 141(17): 7073-7080, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964289

RESUMO

Functional mesoporous carbons have attracted significant scientific and technological interest owning to their fascinating and excellent properties. However, controlled synthesis of functional mesoporous carbons with large tunable pore sizes, small particle size, well-designed functionalities, and uniform morphology is still a great challenge. Herein, we report a versatile nanoemulsion assembly approach to prepare N-doped mesoporous carbon nanospheres with high uniformity and large tunable pore sizes (5-37 nm). We show that the organic molecules (e.g., 1,3,5-trimethylbenzene, TMB) not only play an important role in the evolution of pore sizes but also significantly affect the interfacial interaction between soft templates and carbon precursors. As a result, a well-defined Pluronic F127/TMB/dopamine nanoemulsion can be facilely obtained in the ethanol/water system, which directs the polymerization of dopamine into highly uniform polymer nanospheres and their derived N-doped carbon nanospheres with diversely novel structures such as smooth, golf ball, multichambered, and dendritic nanospheres. The resultant uniform dendritic mesoporous carbon nanospheres show an ultralarge pore size (∼37 nm), small particle size (∼128 nm), high surface area (∼635 m2 g-1), and abundant N content (∼6.8 wt %), which deliver high current density and excellent durability toward oxygen reduction reaction in alkaline solution.

10.
Can J Physiol Pharmacol ; 97(11): 1028-1034, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31330113

RESUMO

Brd4 protein is an important epigenetic regulator involved in the process of inflammatory cytokine production in many diseases. However, whether and how Brd4 participates in the process of wear-particle-induced inflammation remain unclear. This study aimed to investigate the potential role of Brd4 in titanium (Ti) particle-induced inflammatory cytokine production in mouse macrophage RAW264.7 cells. Our experiment detected Brd4 expressed in both normal synovium and periprosthetic osteolysis interface membrane, but the expression increased in the interface membrane as compared with that in normal synovium. Treatment with Ti particles significantly increased TNF-α, IL-6, and IL-1ß production in RAW264.7 cells, which was inhibited by JQ1 or Brd4-siRNA. Ti particles enhanced the expression of Brd4, which was abrogated by JQ1. Ti particles enhanced NF-κB p65 and IKK phosphorylation and attenuated IκBα protein expression, which were abrogated by JQ1. Co-immunoprecipitation analysis indicated that Ti particles promoted the binding of Brd4 to acetylated NF-κB p65 (lysine-310), which was also abrogated in JQ1-treated RAW264.7 cells. In conclusion, Brd4 expression increases in interface membrane and Brd4 participates in the production of pro-inflammatory cytokines induced by Ti particles via promoting the activation of NF-κB signaling and binding to acetylated NF-κB p65 (lysine-310) in mouse macrophages.


Assuntos
Citocinas/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Titânio/farmacologia , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Macrófagos/citologia , Camundongos , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Fatores de Transcrição/genética
11.
Angew Chem Int Ed Engl ; 58(44): 15863-15868, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31411807

RESUMO

A molecular design strategy is used to construct ordered mesoporous Ti3+ -doped Li4 Ti5 O12 nanocrystal frameworks (OM-Ti3+ -Li4 Ti5 O12 ) by the stoichiometric cationic coordination assembly process. Ti4+ /Li+ -citrate chelate is designed as a new molecular precursor, in which the citrate can not only stoichiometrically coordinate Ti4+ with Li+ homogeneously at the atomic scale, but also interact strongly with the PEO segments in the Pluronic F127. These features make the co-assembly and crystallization process more controllable, thus benefiting for the formation of the ordered mesostructures. The resultant OM-Ti3+ -Li4 Ti5 O12 shows excellent rate (143 mAh g-1 at 30 C) and cycling performances (<0.005 % fading per cycle). This work could open a facile avenue to constructing stoichiometric ordered mesoporous oxides or minerals with highly crystalline frameworks.

12.
Knee Surg Sports Traumatol Arthrosc ; 24(10): 3200-3211, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26685696

RESUMO

PURPOSE: Revision of total knee arthroplasty (TKA) is growing rapidly all over the world. The introduction of intramedullary stems for additional stability in revision is well accepted by most of the surgeons, while the philosophy of stem fixation is still under controversy. A meta-analysis was performed to compare the survivorship of revised implants with regard to a cemented or cementless stem fixation. METHODS: Publications with patients who underwent revision TKA with minimum 24-month follow-up were systematically reviewed. Type of intramedullary stem fixation, failure rate for any reason, incidence of aseptic loosening and infection were extracted with follow-up interval specified. Random-effects meta-analysis was used to aggregate incidence data, which was compared between different fixation groups by fitting of logistic regression model. RESULTS: Seventeen observational studies were included in this meta-analysis. There was a similar likelihood of failure for any reason (risk ratio, RR 0.97), general reoperation (RR 1.02), aseptic loosening (RR 1.0) and infection (RR 1.0) in cemented stem fixation group compared to cementless stem fixation group with follow-up <60 months. When follow-up period extend to more than 60 months, the same likelihood was observed as 0.98, 0.96, 0.97 and 0.98, respectively. There was no significant difference in any of these comparisons of survival-related indices. CONCLUSION: There was no significant difference in failure for any reason, reoperation, aseptic loosening and infection between revision TKA with cemented or cementless stem fixation. Based on the available literature, no superiority of any type of stem fixation was found. If follow-up period was neglected, aseptic loosening would be the leading reason for pain and dysfunction of patient undertaken revision TKA. LEVEL OF EVIDENCE: Systematic review of Level IV, Therapeutic studies, Level IV.


Assuntos
Artroplastia do Joelho/métodos , Cimentos Ósseos , Prótese do Joelho , Humanos , Falha de Prótese , Reoperação
13.
Sensors (Basel) ; 15(9): 24002-25, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393607

RESUMO

Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(5): 1345-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26415458

RESUMO

There is a regular use of Moderate Resolution Imaging Spectroradiometer (MODIS) 250 meter EVI to classify the crops on a regional level throughout the world. A rapid agricultural land use change attributed to new Chinese agriculture policy is attracting many researchers to focus. The objective of this study is to present a more straightforward multiyear classification methodology using time series MODIS EVI with 250 meters spatial resolution and subsequent field data in Xinjiang, China. An extensive polygon based ground reference annual crop data were collected for the years 2011, 2012 and 2013 throughout the study area. The most pure pixel within each polygon was selected which eases crop differentiation. Artificial Immune Network (ABNet) was used to classify cotton, maize, wheat/others, rice and grapes, dominating most of the study area. The data of two different years were used together to classify the crop of next year, as 2011 and 2012 were used to classify crops of 2013. Classification results were validated using the same year ground data. Results showed the classification accuracy above 80% for each year with kappa coefficient of 0. 7 and above. However more research and additional ground reference data are needed to classify a range of crops in the study area which will give a more detailed view of the land use land cover change strengthening agriculture decisions practices in the future.


Assuntos
Produtos Agrícolas/classificação , Imagens de Satélites , Agricultura , China , Gossypium , Oryza , Análise Espectral , Triticum , Vitis , Zea mays
15.
Anal Chem ; 86(15): 7931-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24984204

RESUMO

Inner filter effect (IFE), a well-known phenomenon of fluorescence quenching resulting from absorption of the excitation or emission light of luminescent species by absorbent, has been used as a smart approach to design fluorescent sensors, which are characterized by the simplicity and flexibility with high sensitivity. However, further application of IFE-based sensors in complex environment is hampered by the insufficient IFE efficiency and low sensitivity resulting from interference of the external environment. In this paper, we report that IFE occurring on a solid substrate surface would solve this problem. As a proof of concept, a fluorescent sensor for intracellular biothiols has been developed on the basis of the absorption of a newly designed thiols-specific chromogenic probe (CP) coupled with the use of a thiols-independent fluorophore, rhodamine 6G (R6G), operative on the IFE on graphene oxide (GO). To construct an efficient IFE system, R6G was covalently attached to GO, and the CP molecules were adsorbed on the surface of R6G-GO via π-π stacking interaction. The reaction of thiols with CP on R6G-GO decreases the absorption of CP, resulting in the increase of the intensity of R6G fluorescence. The results showed that the IFE efficiency, sensitivity, and dynamic response time of R6G-GO/CP for biothiols could be significantly improved compared with R6G/CP, and furthermore, R6G-GO/CP functioned under complex system and could be used for assaying biothiols in living cells and in human serum samples. This new strategy would be general to explore the development of more effective IFE-based sensors for other analytes of interest.


Assuntos
Corantes Fluorescentes/química , Células HeLa , Humanos , Espectrometria de Fluorescência , Propriedades de Superfície
16.
Front Microbiol ; 15: 1358594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410394

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2023.1287468.].

17.
World J Stem Cells ; 16(5): 575-590, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817328

RESUMO

BACKGROUND: Atherosclerosis (AS), a chronic inflammatory disease of blood vessels, is a major contributor to cardiovascular disease. Dental pulp stem cells (DPSCs) are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflammation-related diseases. Hepatocyte growth factor (HGF) is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases. AIM: To modify DPSCs with HGF (DPSC-HGF) and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout (ApoE-/-) mouse model and an in vitro cellular model. METHODS: ApoE-/- mice were fed with a high-fat diet (HFD) for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs (DPSC-Null) through tail vein at weeks 4, 7, and 11, respectively, and the therapeutic efficacy and mechanisms were analyzed by histopathology, flow cytometry, lipid and glucose measurements, real-time reverse transcription polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay at the different time points of the experiment. An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells (HAOECs), and indirect co-cultured with supernatant of DPSC-Null (DPSC-Null-CM) or DPSC-HGF-CM, and the effect and mechanisms were analyzed by flow cytometry, RT-PCR and western blot. Nuclear factor-κB (NF-κB) activators and inhibitors were also used to validate the related signaling pathways. RESULTS: DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors, and the percentage of macrophages in the aorta, and DPSC-HGF treatment had more pronounced effects. DPSCs treatment had no effect on serum lipoprotein levels. The FACS results showed that DPSCs treatment reduced the percentages of monocytes, neutrophils, and M1 macrophages in the peripheral blood and spleen. DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-α stimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway. CONCLUSION: This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/- mice on a HFD, and could be of greater value in stem cell-based treatments for AS.

18.
Natl Sci Rev ; 11(4): nwae054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545447

RESUMO

Due to their uncontrollable assembly and crystallization process, the synthesis of mesoporous metal oxide single crystals remains a formidable challenge. Herein, we report the synthesis of single-crystal-like mesoporous Li2TiSiO5 by using soft micelles as templates. The key lies in the atomic-scale self-assembly and step-crystallization processes, which ensure the formation of single-crystal-like mesoporous Li2TiSiO5 microparticles via an oriented attachment growth mechanism under the confinement of an in-situ formed carbon matrix. The mesoporous Li2TiSiO5 anode achieves a superior rate capability (148 mAh g-1 at 5.0 A g-1) and outstanding long-term cycling stability (138 mAh g-1 after 3000 cycles at 2.0 A g-1) for lithium storage as a result of the ultrafast Li+ diffusion caused by penetrating mesochannels and nanosized crystal frameworks (5-10 nm). In comparison, bulk Li2TiSiO5 exhibits poor rate capability and cycle performance due to micron-scale diffusion lengths. This method is very simple and reproducible, heralding a new way of designing and synthesizing mesoporous single crystals with controllable frameworks and chemical functionalities.

19.
Anal Chem ; 85(3): 1424-30, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23278187

RESUMO

Fluorescence anisotropy (FA) is a reliable, sensitive, and robust assay approach for determination of many biological targets. However, it is generally not applicable for the assay of small molecules because their molecular masses are relatively too small to produce observable FA value changes. To address this issue, we report herein the development of a FA signal amplification strategy by employing graphene oxide (GO) as the signal amplifier. Because of the extraordinarily larger volume of GO, the fluorophore exhibits very high polarization when bound to GO. Conversely, low polarization is observed when the fluorophore is dissociated from the GO. As proof-of-principle, the approach was applied to FA detection of adenosine triphosphate (ATP) with a fluorescent aptamer. The aptamer exhibits very high polarization when bound to GO, while the FA is greatly reduced when the aptamer complexes with ATP, which exhibits a maximum signal change of 0.316 and a low detection limit of 100 nM ATP in buffer solution. Successful application of this strategy has been demonstrated that it can be constructed either in a "signal-off" or in a "signal-on" detection scheme. Moreover, because FA is less affected by environmental interferences, FA measurements could be conveniently used to directly detect as low as 1.0 µM adenosine triphosphate (ATP) in human serum. The universality of the approach could be achieved to detect an array of biological analytes when complemented with the use of functional DNA structures.


Assuntos
Trifosfato de Adenosina/análise , Sistemas Computacionais , Polarização de Fluorescência/métodos , Grafite/química , Trifosfato de Adenosina/sangue , Humanos
20.
Front Microbiol ; 14: 1287468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088975

RESUMO

Introduction: The intricate interplay between gut microbiota and hyperuricemia remains a subject of growing interest. However, existing studies only provided snapshots of the gut microbiome at single time points, the temporal dynamics of gut microbiota alterations during hyperuricemia progression and the intricate interplay between the gut barrier and microbiota remain underexplored. Our investigation revealed compelling insights into the dynamic changes in both gut microbiota and intestinal barrier function throughout the course of hyperuricemia. Methods: The hyperuricemia mice (HY) were given intragastric administration of adenine and potassium oxalate. Gut microbiota was analyzed by 16S rRNA sequencing at 3, 7, 14, and 21 days after the start of the modeling process. Intestinal permeability as well as LPS, TNF-α, and IL-1ß levels were measured at 3, 7, 14, and 21 days. Results: We discovered that shifts in microbial community composition occur prior to the onset of hyperuricemia, key bacterial Bacteroidaceae, Bacteroides, and Blautia exhibited reduced levels, potentially fueling microbial dysbiosis as the disease progresses. During the course of hyperuricemia, the dynamic fluctuations in both uric acid levels and intestinal barrier function was accompanied with the depletion of key beneficial bacteria, including Prevotellaceae, Muribaculum, Parabacteroides, Akkermansia, and Bacteroides, and coincided with an increase in pathogenic bacteria such as Oscillibacter and Ruminiclostridium. This microbial community shift likely contributed to elevated lipopolysaccharide (LPS) and pro-inflammatory cytokine levels, ultimately promoting metabolic inflammation. The decline of Burkholderiaceae and Parasutterella was inversely related to uric acid levels, Conversely, key families Ruminococcaceae, Family_XIII, genera Anaeroplasma exhibited positive correlations with uric acid levels. Akkermansiaceae and Bacteroidaceae demonstrating negative correlations, while LPS-containing microbiota such as Desulfovibrio and Enterorhabdus exhibited positive correlations with intestinal permeability. Conclusion: In summary, this study offers a dynamic perspective on the complex interplay between gut microbiota, uric acid levels, and intestinal barrier function during hyperuricemia progression. Our study suggested that Ruminiclostridium, Bacteroides, Akkermansiaceae, Bilophila, Burkholderiaceae and Parasutterella were the key bacteria that play vital rols in the progress of hyperuricemia and compromised intestinal barrier, which provide a potential avenue for therapeutic interventions in hyperuricemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA