Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
Cell ; 159(1): 134-147, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25242744

RESUMO

Exon circularization has been identified from many loci in mammals, but the detailed mechanism of its biogenesis has remained elusive. By using genome-wide approaches and circular RNA recapitulation, we demonstrate that exon circularization is dependent on flanking intronic complementary sequences. Such sequences and their distribution exhibit rapid evolutionary changes, showing that exon circularization is evolutionarily dynamic. Strikingly, exon circularization efficiency can be regulated by competition between RNA pairing across flanking introns or within individual introns. Importantly, alternative formation of inverted repeated Alu pairs and the competition between them can lead to alternative circularization, resulting in multiple circular RNA transcripts produced from a single gene. Collectively, exon circularization mediated by complementary sequences in human introns and the potential to generate alternative circularization products extend the complexity of mammalian posttranscriptional regulation.


Assuntos
Processamento Alternativo , Éxons , Genoma Humano , Elementos Alu , Animais , Sequência de Bases , Células-Tronco Embrionárias/metabolismo , Evolução Molecular , Humanos , Íntrons , Mamíferos/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Alinhamento de Sequência
2.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968109

RESUMO

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina , Trofoblastos , Trofoblastos/metabolismo , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Feminino , Gravidez , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Placenta/metabolismo , Transdução de Sinais , Autofagia/fisiologia
3.
Mol Cell ; 71(2): 343-351.e4, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029007

RESUMO

Class II phosphoinositide 3-kinases (PI3K-C2) are large multidomain enzymes that control cellular functions ranging from membrane dynamics to cell signaling via synthesis of 3'-phosphorylated phosphoinositides. Activity of the alpha isoform (PI3K-C2α) is associated with endocytosis, angiogenesis, and glucose metabolism. How PI3K-C2α activity is controlled at sites of endocytosis remains largely enigmatic. Here we show that the lipid-binding PX-C2 module unique to class II PI3Ks autoinhibits kinase activity in solution but is essential for full enzymatic activity at PtdIns(4,5)P2-rich membranes. Using HDX-MS, we show that the PX-C2 module folds back onto the kinase domain, inhibiting its basal activity. Destabilization of this intramolecular contact increases PI3K-C2α activity in vitro and in cells, leading to accumulation of its lipid product, increased recruitment of the endocytic effector SNX9, and facilitated endocytosis. Our studies uncover a regulatory mechanism in which coincident binding of phosphoinositide substrate and cofactor selectively activate PI3K-C2α at sites of endocytosis.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Domínios C2/fisiologia , Células COS , Chlorocebus aethiops , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Clatrina/fisiologia , Endocitose/fisiologia , Células HEK293 , Homeostase , Humanos , Lipídeos/fisiologia , Espectrometria de Massas , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 120(25): e2216206120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307441

RESUMO

Recurrent miscarriage (RM) is a distressing pregnancy complication. While the etiology of RM remains unclear, growing evidence has indicated the relevance of trophoblast impairment to the pathogenesis of RM. PR-SET7 is the sole enzyme catalyzing monomethylation of H4K20 (H4K20me1) and has been implicated in many pathophysiological processes. However, how PR-SET7 functions in trophoblasts and its relevance to RM remain unknown. Here, we found that trophoblast-specific loss of Pr-set7 in mice led to defective trophoblasts, resulting in early embryonic loss. Mechanistic analysis revealed that PR-SET7 deficiency in trophoblasts derepressed endogenous retroviruses (ERVs), leading to double-stranded RNA stress and subsequent viral mimicry, which drove overwhelming interferon response and necroptosis. Further examination discovered that H4K20me1 and H4K20me3 mediated the inhibition of cell-intrinsic expression of ERVs. Importantly, dysregulation of PR-SET7 expression and the corresponding aberrant epigenetic modifications were observed in the placentas of RM. Collectively, our results demonstrate that PR-SET7 acts as an epigenetic transcriptional modulator essential for repressing ERVs in trophoblasts, ensuring normal pregnancy and fetal survival, which sheds new light on potential epigenetic causes contributing to RM.


Assuntos
Aborto Habitual , Retrovirus Endógenos , Feminino , Gravidez , Humanos , Animais , Camundongos , Trofoblastos , Necroptose , Placenta
5.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796552

RESUMO

How maternal Ezh1 and Ezh2 function in H3K27 methylation in vivo in pre-implantation embryos and during embryonic development is not clear. Here, we have deleted Ezh1 and Ezh2 alone or simultaneously from mouse oocytes. H3K27me3 was absent in oocytes without Ezh2 alone, while both H3K27me2 and H3K27me3 were absent in Ezh1/Ezh2 (Ezh1/2) double knockout (KO) oocytes. The effects of Ezh1/2 maternal KO were inherited in zygotes and early embryos, in which restoration of H3K27me3 and H3K27me2 was delayed by the loss of Ezh2 alone or of both Ezh1 and Ezh2. However, the ablation of both Ezh1 and Ezh2, but not Ezh1 or Ezh2 alone, led to significantly decreased litter size due to growth retardation post-implantation. Maternal Ezh1/2 deficiency caused compromised H3K27me3 and pluripotent epiblast cells in late blastocysts, followed by defective embryonic development. By using RNA-seq, we examined crucial developmental genes in maternal Ezh1/2 KO embryos and identified 80 putatively imprinted genes. Maternal Ezh1/2-H3K27 methylation is inherited in offspring embryos and has a critical effect on fetal and placental development. Thus, this work sheds light on maternal epigenetic modifications during embryonic development.


Assuntos
Histonas , Complexo Repressor Polycomb 2 , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Camadas Germinativas/metabolismo , Camundongos , Oócitos/metabolismo , Placenta/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Gravidez
6.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661048

RESUMO

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Assuntos
Tecido Adiposo , Macrófagos , PPAR gama , Rosiglitazona , Transplante Autólogo , Animais , PPAR gama/metabolismo , PPAR gama/genética , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Rosiglitazona/farmacologia , Masculino , Diferenciação Celular , Adipogenia , Adipócitos/metabolismo , Camundongos , Ratos
7.
Chromosome Res ; 32(2): 5, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502277

RESUMO

Artemisia is a large genus encompassing about 400 diverse species, many of which have considerable medicinal and ecological value. However, complex morphological information and variation in ploidy level and nuclear DNA content have presented challenges for evolution studies of this genus. Consequently, taxonomic inconsistencies within the genus persist, hindering the utilization of such large plant resources. Researchers have utilized satellite DNAs to aid in chromosome identification, species classification, and evolutionary studies due to their significant sequence and copy number variation between species and close relatives. In the present study, the RepeatExplorer2 pipeline was utilized to identify 10 satellite DNAs from three species (Artemisia annua, Artemisia vulgaris, Artemisia viridisquama), and fluorescence in situ hybridization confirmed their distribution on chromosomes in 24 species, including 19 Artemisia species with 5 outgroup species from Ajania and Chrysanthemum. Signals of satellite DNAs exhibited substantial differences between species. We obtained one genus-specific satellite from the sequences. Additionally, molecular cytogenetic maps were constructed for Artemisia vulgaris, Artemisia leucophylla, and Artemisia viridisquama. One species (Artemisia verbenacea) showed a FISH distribution pattern suggestive of an allotriploid origin. Heteromorphic FISH signals between homologous chromosomes in Artemisia plants were observed at a high level. Additionally, the relative relationships between species were discussed by comparing ideograms. The results of the present study provide new insights into the accurate identification and taxonomy of the Artemisia genus using molecular cytological methods.


Assuntos
Artemisia , Artemisia/genética , Hibridização in Situ Fluorescente , Filogenia , DNA Satélite/genética , Variações do Número de Cópias de DNA
8.
Cell Mol Life Sci ; 81(1): 221, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763964

RESUMO

In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.


Assuntos
Hormônio Foliculoestimulante , Células da Granulosa , Folículo Ovariano , Proteína Sequestossoma-1 , Ubiquitinação , Proteínas WT1 , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Feminino , Proteínas WT1/metabolismo , Proteínas WT1/genética , Camundongos , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Humanos , Camundongos Knockout
9.
Nucleic Acids Res ; 51(10): 4745-4759, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36864754

RESUMO

Endogenous retroviruses (ERVs) have been proposed as a driving force for the evolution of the mammalian placenta, however, the contribution of ERVs to placental development and the underlying regulatory mechanism remain largely elusive. A key process of placental development is the formation of multinucleated syncytiotrophoblasts (STBs) in direct contact with maternal blood, through which constitutes the maternal-fetal interface critical for nutrient allocation, hormone production and immunological modulation during pregnancy. We delineate that ERVs profoundly rewire the transcriptional program of trophoblast syncytialization. Here, we first determined the dynamic landscape of bivalent ERV-derived enhancers with dual occupancy of H3K27ac and H3K9me3 in human trophoblast stem cells (hTSCs). We further demonstrated that enhancers overlapping several ERV families tend to exhibit increased H3K27ac and reduced H3K9me3 occupancy in STBs relative to hTSCs. Particularly, bivalent enhancers derived from the Simiiformes-specific MER50 transposons were linked to a cluster of genes important for STB formation. Importantly, deletions of MER50 elements adjacent to several STB genes, including MFSD2A and TNFAIP2, significantly attenuated their expression concomitant to compromised syncytium formation. Together, we propose that ERV-derived enhancers, MER50 specifically, fine-tune the transcriptional networks accounting for human trophoblast syncytialization, which sheds light on a novel ERV-mediated regulatory mechanism underlying placental development.


Assuntos
Retrovirus Endógenos , Elementos Facilitadores Genéticos , Placenta , Trofoblastos , Animais , Feminino , Humanos , Gravidez , Retrovirus Endógenos/genética , Regulação da Expressão Gênica , Mamíferos/crescimento & desenvolvimento , Placenta/citologia , Placenta/fisiologia , Trofoblastos/fisiologia
10.
PLoS Genet ; 18(1): e1010018, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025868

RESUMO

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein ß (C/EBPß) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


Assuntos
Decídua/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Útero/citologia , Animais , Linhagem Celular , Proliferação de Células , Implantação do Embrião , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Camundongos , Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Útero/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914132

RESUMO

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Assuntos
Implantação do Embrião , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno , Progesterona , Útero , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Infertilidade Feminina , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Útero/enzimologia , Útero/metabolismo
12.
J Cell Physiol ; 239(6): e31244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529784

RESUMO

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.


Assuntos
Mitocôndrias , Oócitos , Complexo Repressor Polycomb 2 , Animais , Feminino , Camundongos , Apoptose/genética , Autofagia/genética , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Potencial da Membrana Mitocondrial , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Mórula/metabolismo , Oócitos/metabolismo , Estresse Oxidativo/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Espécies Reativas de Oxigênio/metabolismo , Histonas/metabolismo
13.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35267018

RESUMO

Macropinocytosis mediates non-selective bulk uptake of extracellular fluid. It is the major route by which axenic Dictyostelium cells obtain nutrients and has emerged as a nutrient-scavenging pathway in mammalian cells. How environmental and cellular nutrient status modulates macropinocytic activity is not well understood. By developing a high-content imaging-based genetic screen in Dictyostelium discoideum we identified Slc15A, an oligopeptide transporter located at the plasma membrane and early macropinosome, as a novel macropinocytosis regulator. We show that deletion of slc15A but not two other related slc15 genes, leads to reduced macropinocytosis, reduced cell growth and aberrantly increased autophagy in cells grown in nutrient-rich medium. Expression of Slc15A protein or supplying cells with free amino acids rescues these defects. In contrast, expression of transport-defective Slc15A or supplying cells with amino acids in their di-peptide forms fails to rescue these defects. Therefore, Slc15A modulates the level of macropinocytosis by maintaining the intracellular availability of key amino acids through extraction of oligopeptides from the early macropinocytic pathway. We propose that Slc15A constitutes part of a positive feedback mechanism coupling cellular nutrient status and macropinocytosis. This article has an associated First Person interview with the first authors of the paper.


Assuntos
Dictyostelium , Animais , Dictyostelium/genética , Endossomos , Humanos , Mamíferos , Nutrientes , Oligopeptídeos , Pinocitose
14.
Nat Immunol ; 13(10): 981-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22842344

RESUMO

The mechanisms that regulate the T(H)9 subset of helper T cells and diseases mediated by T(H)9 cells remain poorly defined. Here we found that the costimulatory receptor OX40 was a powerful inducer of T(H)9 cells in vitro and T(H)9 cell-dependent airway inflammation in vivo. In polarizing conditions based on transforming growth factor-ß (TGF-ß), ligation of OX40 inhibited the production of induced regulatory T cells and the T(H)17 subset of helper T cells and diverted CD4(+)Foxp3(-) T cells to a T(H)9 phenotype. Mechanistically, OX40 activated the ubiquitin ligase TRAF6, which triggered induction of the kinase NIK in CD4(+) T cells and the noncanonical transcription factor NF-κB pathway; this subsequently led to the generation of T(H)9 cells. Thus, our study identifies a previously unknown mechanism for the induction of T(H)9 cells and may have important clinical implications in allergic inflammation.


Assuntos
Ligante OX40/metabolismo , Receptores OX40/metabolismo , Sistema Respiratório/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos CD4/biossíntese , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-9/biossíntese , Interleucina-9/metabolismo , Camundongos , NF-kappa B/metabolismo , Ligante OX40/imunologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores OX40/imunologia , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Fator 6 Associado a Receptor de TNF/biossíntese , Fator 6 Associado a Receptor de TNF/metabolismo , Transativadores/imunologia , Transativadores/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Quinase Induzida por NF-kappaB
15.
Theor Appl Genet ; 137(5): 105, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622387

RESUMO

KEY MESSAGE: Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.


Assuntos
Brassica , Locos de Características Quantitativas , Clorofila A , Melhoramento Vegetal , Folhas de Planta/genética , Carotenoides , Brassica/genética , Estudos de Associação Genética
16.
Biotechnol Bioeng ; 121(6): 1831-1845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38454569

RESUMO

Raman spectroscopy has found widespread usage in monitoring cell culture processes both in research and practical applications. However, commonly, preprocessing methods, spectral regions, and modeling parameters have been chosen based on experience or trial-and-error strategies. These choices can significantly impact the performance of the models. There is an urgent need for a simple, effective, and automated approach to determine a suitable procedure for constructing accurate models. This paper introduces the adoption of a design of experiment (DoE) method to optimize partial least squares models for measuring the concentration of different components in cell culture bioreactors. The experimental implementation utilized the orthogonal test table L25(56). Within this framework, five factors were identified as control variables for the DoE method: the window width of Savitzky-Golay smoothing, the baseline correction method, the order of preprocessing steps, spectral regions, and the number of latent variables. The evaluation method for the model was considered as a factor subject to noise. The optimal combination of levels was determined through the signal-to-noise ratio response table employing Taguchi analysis. The effectiveness of this approach was validated through two cases, involving different cultivation scales, different Raman spectrometers, and different analytical components. The results consistently demonstrated that the proposed approach closely approximated the global optimum, regardless of data set size, predictive components, or the brand of Raman spectrometer. The performance of models recommended by the DoE strategy consistently surpassed those built using raw data, underscoring the reliability of models generated through this approach. When compared to exhaustive all-combination experiments, the DoE approach significantly reduces calculation times, making it highly practical for the implementation of Raman spectroscopy in bioprocess monitoring.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Análise Espectral Raman , Análise Espectral Raman/métodos , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Células CHO , Cricetulus , Animais
17.
J Fluoresc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753258

RESUMO

An "on-off-on" fluorescent probe LK was synthesized from 2-benzoylpyridine and o-vanillin, which could sequentially detect Fe3+ and F- in DMSO/H2O solutions (v/v = 1/1, HEPES buffer, 1.0 mM, pH 7.0) with large Stokes shift (178 nm). LK exhibited not only high selectivity and sensitivity towards Fe3+ and F-, but also strong anti-interference ability to other ions. LK was coordinated with Fe3+ at a ratio of 2:1, with a binding constant (Ka) of 1.3 × 104 M- 1. The detection limits for Fe3+ and F- were 6.9 × 10- 8 M and 3.0 × 10- 7 M, respectively. Due to its excellent sensing performance, LK was successfully applied in actual water samples and test papers for the detection of Fe3+ and F-.

18.
J Biochem Mol Toxicol ; 38(1): e23515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37632267

RESUMO

Accumulation of advanced glycation end products (AGEs) causes apoptosis in human nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IVDD). The purpose of this study was to determine the roles of thioredoxin-interacting protein (TXNIP) in the mechanisms underlying AGE-induced apoptosis of NPCs. TXNIP was silenced or overexpressed in HNPCs exposed to AGEs. Glycolysis was assessed using extracellular acidification rate (ECAR), ATP level, GLUT1, and GLUT4 measurements. AGEs, TXNIP, GLUT1, and GLUT4 levels in IVDD patients were measured as well. In NPCs, AGEs reduced cell viability, induced apoptosis, inhibited glycolysis, and increased TXNIP expression. Silencing TXNIP compromised the effects of AGEs on cell viability, apoptosis, and glycolysis in NPCs. Furthermore, TXNIP overexpression resulted in decreased cell viability, increased apoptotic cells, and glycolysis suppression. Furthermore, co-treatment with a glycolysis inhibitor improved TXNIP silencing's suppressive effects on AGE-induced cell injury in NPCs. In IVDD patients with Pfirrmann Grades II-V, increasing trends in AGEs and TXNIP were observed, while decreasing trends in GLUT1 and GLUT4. AGE levels had positive correlations with TXNIP levels. Both AGE and TXNIP levels correlated negatively with GLUT1 and GLUT4. Our study indicates that TXNIP plays a role in mediating AGE-induced cell injury through suppressing glycolysis. The accumulation of AGEs, the upregulation of TXNIP, and the downregulation of GLUT1 and GLUT4 are all linked to the progression of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Apoptose , Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Transporte/metabolismo
19.
Mol Divers ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622351

RESUMO

Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.

20.
Plant Cell Rep ; 43(6): 157, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819475

RESUMO

KEY MESSAGE: CmMYB308 was identified as a key regulator in chrysanthemum flower color variation from purple to pink by conducting transcriptome and metabolome analysis. CmMYB308 can inhibit anthocyanin biosynthesis by suppressing the expression of CmPAL, CmC4H, and Cm4CL. Flower color variation is a widespread natural occurrence that plays a significant role in floral breeding. We discovered a variation in the flower of the chrysanthemum cultivar 'Dante Purple' (abbreviated as 'DP'), where the flower color shifted from purple to pink. We successfully propagated these pink flowers through tissue culture and designated them as DPM. By conducting transcriptome and metabolome analysis, we identified a reduction in the expression of critical genes involved in anthocyanin biosynthesis-CmPAL, CmC4H, and Cm4CL-in the DPM. This downregulation led to an accumulation of phenylalanine and cinnamic acid within the general phenylpropanoid pathway (GPP), which prevented their conversion into cyanidin and cyanidin 3-glucoside. As a result, the flowers turned pink. Additional transformation and biochemical experiments confirmed that the upregulation of CmMYB308 gene expression in the DPM directly suppressed CmPAL-1 and CmC4H genes, which indirectly affected Cm4CL-3 expression and ultimately inhibited anthocyanin biosynthesis in the DPM. This study offers a preliminary insight into the molecular mechanism underlying chrysanthemum flower color mutation, paving the way for genetic improvements in chrysanthemum flower color breeding.


Assuntos
Antocianinas , Chrysanthemum , Flores , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/metabolismo , Pigmentação/genética , Transcriptoma/genética , Metabolômica/métodos , Metaboloma/genética , Perfilação da Expressão Gênica , Cor , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA