Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Nat Immunol ; 22(6): 746-756, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031618

RESUMO

T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8+ tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10-Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8+ tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10-Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy.


Assuntos
Imunoterapia Adotiva/métodos , Interleucina-10/farmacologia , Neoplasias/terapia , Fosforilação Oxidativa/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Linhagem Celular Tumoral , Terapia Combinada/métodos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Células HEK293 , Meia-Vida , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Interleucina-10/uso terapêutico , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Interleucina-10/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
2.
Nat Immunol ; 21(12): 1540-1551, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020660

RESUMO

The metabolic challenges present in tumors attenuate the metabolic fitness and antitumor activity of tumor-infiltrating T lymphocytes (TILs). However, it remains unclear whether persistent metabolic insufficiency can imprint permanent T cell dysfunction. We found that TILs accumulated depolarized mitochondria as a result of decreased mitophagy activity and displayed functional, transcriptomic and epigenetic characteristics of terminally exhausted T cells. Mechanistically, reduced mitochondrial fitness in TILs was induced by the coordination of T cell receptor stimulation, microenvironmental stressors and PD-1 signaling. Enforced accumulation of depolarized mitochondria with pharmacological inhibitors induced epigenetic reprogramming toward terminal exhaustion, indicating that mitochondrial deregulation caused T cell exhaustion. Furthermore, supplementation with nicotinamide riboside enhanced T cell mitochondrial fitness and improved responsiveness to anti-PD-1 treatment. Together, our results reveal insights into how mitochondrial dynamics and quality orchestrate T cell antitumor responses and commitment to the exhaustion program.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Dinâmica Mitocondrial/imunologia , Biomarcadores , Epigênese Genética , Epigenômica , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitofagia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Niacinamida/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Estresse Fisiológico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
3.
Nat Immunol ; 21(3): 298-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066953

RESUMO

Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-ß signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.


Assuntos
Antígenos CD36/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apoptose/imunologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Linhagem Celular Tumoral , Feminino , Homeostase/imunologia , Humanos , Imunoterapia , Metabolismo dos Lipídeos/genética , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/metabolismo , Neoplasias/patologia , PPAR beta/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Microambiente Tumoral/imunologia
4.
Nat Immunol ; 19(8): 809-820, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967452

RESUMO

Regulatory factor X 7 (Rfx7) is an uncharacterized transcription factor belonging to a family involved in ciliogenesis and immunity. Here, we found that deletion of Rfx7 leads to a decrease in natural killer (NK) cell maintenance and immunity in vivo. Genomic approaches showed that Rfx7 coordinated a transcriptional network controlling cell metabolism. Rfx7-/- NK lymphocytes presented increased size, granularity, proliferation, and energetic state, whereas genetic reduction of mTOR activity mitigated those defects. Notably, Rfx7-deficient NK lymphocytes were rescued by interleukin 15 through engagement of the Janus kinase (Jak) pathway, thus revealing the importance of this signaling for maintenance of such spontaneously activated NK cells. Rfx7 therefore emerges as a novel transcriptional regulator of NK cell homeostasis and metabolic quiescence.


Assuntos
Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Fator Regulador X1/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimera , Metabolismo Energético , Redes Reguladoras de Genes , Imunidade Celular/genética , Imunidade Inata/genética , Janus Quinases/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator Regulador X1/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Immunity ; 54(7): 1561-1577.e7, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34102100

RESUMO

A common metabolic alteration in the tumor microenvironment (TME) is lipid accumulation, a feature associated with immune dysfunction. Here, we examined how CD8+ tumor infiltrating lymphocytes (TILs) respond to lipids within the TME. We found elevated concentrations of several classes of lipids in the TME and accumulation of these in CD8+ TILs. Lipid accumulation was associated with increased expression of CD36, a scavenger receptor for oxidized lipids, on CD8+ TILs, which also correlated with progressive T cell dysfunction. Cd36-/- T cells retained effector functions in the TME, as compared to WT counterparts. Mechanistically, CD36 promoted uptake of oxidized low-density lipoproteins (OxLDL) into T cells, and this induced lipid peroxidation and downstream activation of p38 kinase. Inhibition of p38 restored effector T cell functions in vitro, and resolution of lipid peroxidation by overexpression of glutathione peroxidase 4 restored functionalities in CD8+ TILs in vivo. Thus, an oxidized lipid-CD36 axis promotes intratumoral CD8+ T cell dysfunction and serves as a therapeutic avenue for immunotherapies.


Assuntos
Antígenos CD36/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peroxidação de Lipídeos/fisiologia , Lipoproteínas LDL/metabolismo , Neoplasias/metabolismo , Receptores Depuradores/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microambiente Tumoral/fisiologia
6.
Nat Immunol ; 18(9): 985-994, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714978

RESUMO

Glutamine metabolism provides synergistic support for macrophage activation and elicitation of desirable immune responses; however, the underlying mechanisms regulated by glutamine metabolism to orchestrate macrophage activation remain unclear. Here we show that the production of α-ketoglutarate (αKG) via glutaminolysis is important for alternative (M2) activation of macrophages, including engagement of fatty acid oxidation (FAO) and Jmjd3-dependent epigenetic reprogramming of M2 genes. This M2-promoting mechanism is further modulated by a high αKG/succinate ratio, whereas a low ratio strengthens the proinflammatory phenotype in classically activated (M1) macrophages. As such, αKG contributes to endotoxin tolerance after M1 activation. This study reveals new mechanistic regulations by which glutamine metabolism tailors the immune responses of macrophages through metabolic and epigenetic reprogramming.


Assuntos
Reprogramação Celular/imunologia , Epigênese Genética , Ácidos Cetoglutáricos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Animais , Imunoprecipitação da Cromatina , Ciclo do Ácido Cítrico/imunologia , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glutamina/metabolismo , Glicólise/imunologia , Ácidos Cetoglutáricos/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Metabolômica , Camundongos , NF-kappa B/imunologia , Oxirredução , Fosforilação Oxidativa , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Ácido Succínico/metabolismo
7.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38221905

RESUMO

BACKGROUND: Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients. METHODS: We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naïve Bayes and Quadratic Discriminant Analysis (QDA). RESULTS: In the Lanzhou cohort, SVM and Naïve Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods. CONCLUSION: Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naïve Bayes-QDA model offers a precise approach to managing PVT in this population.


Assuntos
Veia Porta , Trombose Venosa , Humanos , Veia Porta/patologia , Fatores de Risco , Teorema de Bayes , Medicina de Precisão , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Fibrose , Trombose Venosa/complicações , Trombose Venosa/diagnóstico
8.
Nucleic Acids Res ; 51(1): 198-217, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583364

RESUMO

Polyploidy and the subsequent ploidy reduction and genome shuffling are the major driving forces of genome evolution. Here, we revealed short-term allopolyploid genome evolution by sequencing a synthetic intergeneric hybrid (Raphanobrassica, RRCC). In this allotetraploid, the genome deletion was quick, while rearrangement was slow. The core and high-frequency genes tended to be retained while the specific and low-frequency genes tended to be deleted in the hybrid. The large-fragment deletions were enriched in the heterochromatin region and probably derived from chromosome breaks. The intergeneric translocations were primarily of short fragments dependent on homoeology, indicating a gene conversion origin. To accelerate genome shuffling, we developed an efficient genome editing platform for Raphanobrassica. By editing Fanconi Anemia Complementation Group M (FANCM) genes, homoeologous recombination, chromosome deletion and secondary meiosis with additional ploidy reduction were accelerated. FANCM was shown to be a checkpoint of meiosis and controller of ploidy stability. By simultaneously editing FLIP genes, gene conversion was precisely introduced, and mosaic genes were produced around the target site. This intergeneric hybrid and genome editing platform not only provides models that facilitate experimental evolution research by speeding up genome shuffling and conversion but also accelerates plant breeding by enhancing intergeneric genetic exchange and creating new genes.


Assuntos
Brassica , Embaralhamento de DNA , Poliploidia , Raphanus , Humanos , DNA Helicases , Genoma de Planta , Raphanus/genética , Brassica/genética
9.
Opt Express ; 32(4): 5760-5769, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439294

RESUMO

Heme is the prosthetic group for cytochrome that exists in nearly all living organisms and serves as a vital component of human red blood cells (RBCs). Tunable optical nonlinearity in suspensions of RBCs has been demonstrated previously, however, the nonlinear optical response of a pure heme (without membrane structure) solution has not been studied to our knowledge. In this work, we show optical nonlinearity in two common kinds of heme (i.e., hemin and hematin) solutions by a series of experiments and numerical simulations. We find that the mechanism of nonlinearity in heme solutions is distinct from that observed in the RBC suspensions where the nonlinearity can be easily tuned through optical power, concentration, and the solution properties. In particular, we observe an unusual phenomenon wherein the heme solution exhibits negative optical nonlinearity and render self-collimation of a focused beam at specific optical powers, enabling shape-preserving propagation of light to long distances. Our results may have potential applications in optical imaging and medical diagnosis through blood.


Assuntos
Eritrócitos , Heme , Humanos , Imagem Óptica
10.
Inorg Chem ; 63(2): 1449-1461, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221879

RESUMO

Constructing a Z-scheme heterostructure on a metal-organic framework (MOF) composite with an explicit charge transfer mechanism at the interface is considered to be an effective strategy for improving the photocatalytic performance of MOFs. Herein, an internal electric field (IEF)-induced Z-scheme heterostructure on the ZnIn2S4@NH2-MIL-125 composite is designed and fabricated by a facile electrostatic self-assembly process. Systematic investigations reveal that close interfacial contact and difference in work function between NH2-MIL-125 and ZnIn2S4 enable the formation of the IEF, which drives the Z-scheme charge transfer as revealed by the in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), photoirradiated Kelvin probe force microscope (KPFM) measurement, electron paramagnetic resonance (EPR) radical trapping experiment, as well as density functional theory (DFT) calculation; meanwhile, directions of the interfacial IEFs are determined. Benefiting from the unique merit of IEF-induced Z-scheme charge transfer, the optimized ZnIn2S4@NH2-MIL-125 composite exhibits significantly enhanced photocatalytic activity for the photoreduction of 4-nitroaniline (4-NA) to p-phenylenediamine (PPD) under visible light irradiation. This work not only provides in-depth insights for charge transfer in the IEF-induced Z scheme heterostructure but also affords useful inspirations on designing the Z-scheme MOF composite to boost the photocatalytic performance.

11.
J Fluoresc ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722498

RESUMO

In this study, we present a novel near-infrared (NIR) fluorescent probe Nile-ONO designed for the selective and sensitive detection of ONOO-. The probe Nile-ONO employed Nile red as the fluorophore, with diphenylphosphinate serving as the reaction site. In the presence of ONOO-, the probe Nile-ONO exhibits remarkable fluorescence enhancement at 659 nm, with a response time of less than 20 min and a low detection limit of 0.32 µM. Importantly, MTT assays demonstrate low cytotoxicity in living cells. Furthermore, Nile-ONO has excellent imaging capabilities for endogenous ONOO-. Overall, this work introduces a valuable new method for the rapid detection of ONOO- in biological systems.

12.
BMC Biol ; 21(1): 226, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864194

RESUMO

BACKGROUND: Gene knockout and knock-in have been widely performed in large farm animals based on genome editing systems. However, many types of precise gene editing, including targeted deletion, gene tagging, and large gene fragment replacement, remain a challenge in large farm animals. RESULTS: Here, we established versatile self-excising gene-targeting technology in combination with programmable nucleases (SEGCPN) to efficiently generate various types of precise gene editing in bovine. First, we used this versatile method to successfully generate bovine embryos with point mutations and 11-bp deletions at the MSTN locus. Second, we successfully generated bulls with EGFP labeling at the SRY locus. Finally, we successfully generated humanized cows in which the endogenous 18-kb α-casein gene was replaced with a 2.6-kb human α-lactalbumin gene. CONCLUSIONS: In summary, our new SEGCPN method offers unlimited possibilities for various types of precise gene editing in large animals for application both in agriculture and disease models.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Feminino , Animais , Bovinos/genética , Masculino , Humanos , Edição de Genes/métodos , Marcação de Genes/métodos , Técnicas de Inativação de Genes , Mutação Puntual
13.
Mikrochim Acta ; 191(4): 186, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451316

RESUMO

A carbon dot (CD) was prepared by o-phenylenediamine and water, which showed bright yellow fluorescence under ultraviolet light irradiation (λ = 580 nm), and verified good fluorescence quenching effect on penicillin G sodium (Png-Na). Using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, and Png-Na as a template, a kind of composite microsphere combining CD and molecularly imprinted polymer (MIP) was synthesized by surface-initiated atomic transfer radical polymerization (SI-ATRP). For reasons of comparison, we also prepared MIP without CD and non-imprinted polymers (NIPs). Through static and dynamic adsorption experiments, the maximum adsorption capacity was 47.05 mg g-1 and the equilibrium time was 30 min. High-performance liquid chromatography (HPLC) was utilized to determine the content of Png-Na in the spiked milk samples. A sensitive, rapid, and simple method for determination of Png-Na in food samples was developed. The utilized approach enabled the quantification of Png-Na within the concentration range 20-1000 µg L-1 (with a limit of detection of 5 µg L-1). The recoveries achieved were in the range 93.3-98.2%, with a relative standard deviation of 1.2-4.2%. The results demonstrated that CD@MIP possessed the capability of specific adsorption and fluorescence detection of Png-Na, enabling simultaneous detection and enrichment of Png-Na in real samples.


Assuntos
Leite , Polímeros Molecularmente Impressos , Animais , Adsorção , Penicilina G , Carbono
14.
Immunol Rev ; 295(1): 126-139, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32147869

RESUMO

The diverse distribution and functions of regulatory T cells (Tregs) ensure tissue and immune homeostasis; however, it remains unclear which factors can guide distribution, local differentiation, and tissue context-specific behavior in Tregs. Although the emerging concept that Tregs could re-adjust their transcriptome based on their habitations is supported by recent findings, the underlying mechanisms that reprogram transcriptome in Tregs are unknown. In the past decade, metabolic machineries have been revealed as a new regulatory circuit, known as immunometabolic regulation, to orchestrate activation, differentiation, and functions in a variety of immune cells, including Tregs. Given that systemic and local alterations of nutrient availability and metabolite profile associate with perturbation of Treg abundance and functions, it highlights that immunometabolic regulation may be one of the mechanisms that orchestrate tissue context-specific regulation in Tregs. The understanding on how metabolic program instructs Tregs in peripheral tissues not only represents a critical opportunity to delineate a new avenue in Treg biology but also provides a unique window to harness Treg-targeting approaches for treating cancer and autoimmunity with minimizing side effects. This review will highlight the metabolic features on guiding Treg formation and function in a disease-oriented perspective and aim to pave the foundation for future studies.


Assuntos
Metabolismo Energético , Homeostase , Imunomodulação , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Suscetibilidade a Doenças , Homeostase/imunologia , Humanos , Imunidade , Tecido Linfoide , Especificidade de Órgãos
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 358-364, 2024 Apr 15.
Artigo em Zh | MEDLINE | ID: mdl-38660899

RESUMO

OBJECTIVES: To study the distribution, drug resistance, and biofilm characteristics of carbapenem-resistant Acinetobacter baumannii (CRAB) isolated from hospitalized children, providing a reference for the prevention and treatment of CRAB infections in hospitalized children. METHODS: Forty-eight CRAB strains isolated from January 2019 to December 2022 were classified into epidemic and sporadic strains using repetitive extragenic palindromic sequence-based polymerase chain reaction. The drug resistance, biofilm phenotypes, and gene carriage of these two types of strains were compared. RESULTS: Both the 22 epidemic strains and the 26 sporadic strains were producers of Class D carbapenemases or extended-spectrum ß-lactamases with downregulated outer membrane porins, harboring the VIM, OXA-23, and OXA-51 genes. The biofilm formation capability of the sporadic strains was stronger than that of the epidemic strains (P<0.05). Genes related to biofilm formation, including Bap, bfs, OmpA, CsuE, and intI1, were detected in both epidemic and sporadic strains, with a higher detection rate of the intI1 gene in epidemic strains (P<0.05). CONCLUSIONS: CRAB strains are colonized in the hospital, with sporadic strains having a stronger ability to form biofilms, suggesting the potential for forming new clonal transmissions in the hospital. Continuous monitoring of the epidemic trends of CRAB and early warning of the distribution of epidemic strains are necessary to reduce the risk of CRAB infections in hospitalized children.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Biofilmes , Carbapenêmicos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Biofilmes/efeitos dos fármacos , Carbapenêmicos/farmacologia , Humanos , Criança , Infecções por Acinetobacter/microbiologia , Pré-Escolar , beta-Lactamases/genética , Criança Hospitalizada , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Feminino , Lactente , Masculino , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
16.
Glia ; 71(5): 1233-1246, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36598105

RESUMO

Optic nerve head (ONH) astrocytes provide structural and metabolic support to neuronal axons in developmental, physiological, and pathological progression. Mechanosensitive properties of astrocytes allow them to sense and respond to mechanical cues from the local environment. We confirmed that ONH astrocytes express the mechanosensitive ion channel Piezo1 in vivo. By manipulating Piezo1 knockdown or overexpression in vitro, we found that Piezo1 is necessary but insufficient for ONH astrocyte proliferation. Loss of Piezo1 can lead to cell cycle arrest at G0/G1 phase, a possible mechanism involving decreased yes-associated protein (YAP) nuclear localization and downregulation of YAP-target cell cycle-associated factors, including cyclin D1 and c-Myc. Gene ontology enrichment analysis of differential expression genes from RNA-seq data indicates that the absence of Piezo1 affects biological processes involving cell division. Our results demonstrate that Piezo1 is an essential regulator in cell cycle progression in ONH astrocytes.


Assuntos
Disco Óptico , Disco Óptico/metabolismo , Disco Óptico/patologia , Astrócitos/metabolismo , Divisão Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Ciclo Celular/genética
17.
Curr Issues Mol Biol ; 45(10): 8444-8460, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886975

RESUMO

Umbilical cord mesenchymal stem cell (UC-MSC) therapy improves liver function in liver cirrhosis patients. This study aimed to elucidate the therapeutic mechanism underlying cell therapy by analyzing changes in the modification and expression of proteins 1 month post-treatment with UC-MSCs. This prospective study included 11 cirrhosis patients who received MSC injection. The laboratory indexes before and after treatment were collected to evaluate the clinical treatment effect of UC-MSCs, and the protein expression and lactylation modification in the liver were comprehensively revealed. Meanwhile, weighted gene co-expression network analysis was used to analyze the co-expression protein modules and their relationship with clinical features. The patients with liver cirrhosis showed an improvement trend after receiving UC-MSC treatment; specifically, the liver protein synthesis function was significantly improved and the coagulation function was also significantly improved. Proteomics combined with lactic acid proteomics revealed 160 lysine lactylation (Kla) sites of 119 proteins. Functional analysis showed that the lactylation-modified proteins were enriched in the pathway of glucose and other substances' metabolism, and many key enzymes of glycolysis and gluconeogenesis were lactated. UC-MSC therapy has a certain clinical effect in the treatment of liver cirrhosis and may act by regulating material metabolism, because the lactylation protein points to energy metabolism.

18.
Antimicrob Agents Chemother ; 67(11): e0056323, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902403

RESUMO

Daptomycin (DAP) is effective against methicillin-resistant Staphylococcus aureus (MRSA). However, reduced susceptibility to DAP in MRSA may lead to treatment failures. We aim to determine the distribution of DAP minimum inhibitory concentrations (MICs) and DAP heteroresistance (hDAP) among MRSA lineages in China. A total of 472 clinical MRSA isolates collected from 2015 to 2017 in China were examined for DAP susceptibility. All isolates (n = 472) were found to be DAP susceptible, but 35.17% (166/472) of them exhibited a high DAP MIC (MIC >0.5 µg/mL). The high DAP MIC group contained a larger proportion of isolates with a higher vancomycin or teicoplanin MIC (>1.5 µg/mL) than the low DAP MIC group (19.3% vs 7.8%, P < 0.001; 22.3% vs 8.2%, P < 0.001). We compared the clonal complex (CC) distributions and clinical characteristics in MRSA isolates stratified by DAP MIC. CC5 isolates were less susceptible to DAP (MIC50 = 1 µg/mL) than CC59 isolates (MIC50 = 0.5 µg/mL, P < 0.001). Population analysis profiling revealed that 5 of 10 ST5 and ST59 DAP-susceptible MRSA isolates investigated exhibited hDAP. The results also showed that CC5 MRSA with an agrA mutation (I238K) had a higher DAP MIC than those with a wild-type agrA (P < 0.001). The agrA-I238K mutation was found to be associated with agr dysfunction as indicated by the loss of δ-hemolysin production. In addition, agr/psmα defectiveness was associated with hDAP in MRSA. Whole-genome sequencing analysis revealed mutations in mprF and walR/walK in DAP-resistant subpopulations, and most DAP-resistant subpopulations (6/8, 75%) were stable. Our study suggests that the increased DAP resistance and hDAP in MRSA may threaten the effectiveness against MRSA infections.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Vancomicina/farmacologia , Testes de Sensibilidade Microbiana
19.
Biol Chem ; 404(1): 29-39, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36215729

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary human liver malignancy with high mortality. Liver cancer stem cells (CSCs) have been demonstrated to contribute to the recurrence, metastasis and drug resistance of liver cancer. Human HCC cohort analysis indicated that the epigenetic regulator polycomb chromobox homologue 4 (CBX4) was overexpressed in human HCC. Moreover, we found that CBX4 expression was significantly higher in CD44+ CD133+ Hep3B CSCs. Functionally, we demonstrated that CBX4 regulated cell proliferation, self-renewal, and metastasis ability of Hep3B CSCs. Bioinformatics analysis predicted that CBX4 was a direct target of microRNA-6838-5p (miR-6838-5p), which was further confirmed by luciferase reporter assay. MiR-6838-6p was down-regulated in HCC tumors and overexpression of miR-6838-5p attenuated the malignant traits of human liver CSCs in vitro. In addition, we found that miR-6838-5p/CBX4 axis modulates the biological properties of human liver CSCs via regulating ERK signaling. Overexpression of miR-6838-5p suppressed Hep3B xenograft tumor growth in vivo, while CBX4 overexpression abrogated the suppression effect, restored the angiogenesis, epithelial-to-mesenchymal transition (EMT), and ERK signaling in Hep3B tumor. In summary, our findings suggest that miR-6838-5p/CBX4 axis regulates liver tumor development and metastasis, which could be utilized as potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Ligases/metabolismo , Proteínas do Grupo Polycomb/metabolismo
20.
J Antimicrob Chemother ; 78(8): 1871-1881, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37287125

RESUMO

BACKGROUND: The overuse of antibiotics in livestock is contributing to the burden of antimicrobial resistance in humans, representing a One Health challenge. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has recently become a growing concern, and ST9 is the major LA-MRSA lineage in China and has emerged in clinical settings. METHODS: Antimicrobial susceptibility testing was used to evaluate the tetracycline resistance of ST9 MRSA collections, and gene cloning experiments were performed to explore the resistance mechanisms. Whole-genome sequencing and comparative genomics were used to analyse the genetic features of clinical ST9 isolates. A phylogenetic tree was constructed to investigate the relationship of human- and livestock-derived ST9 isolates. RESULTS: Clinical ST9 isolates were found to possess several types of resistance genes and resistance-related mutations and were multidrug-resistant. Notably, all clinical ST9 isolates were resistant to third-generation tetracyclines. Cloning experiments showed that both the acquisition of the tetracycline resistance gene tet(L)/tet(63) and a mutation in the rpsJ gene contributed to third-generation tetracycline resistance. Phylogenetic analysis showed that the ST9 isolates collected in healthcare systems were probably transmitted from livestock. The ST9 lineage underwent multiple interspecies recombination events and gained many resistance elements. Furthermore, the resistance to third-generation tetracyclines may have evolved under tetracycline pressure in livestock. CONCLUSIONS: The evolution of ST9 MRSA in livestock and transmission of this clone between humans and livestock highlight the importance of establishing control strategies with the One Health approach to reduce the burden of antibiotic resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Gado , Resistência a Tetraciclina/genética , Filogenia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Antibacterianos/farmacologia , Tetraciclina , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA