Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 31(21): 1897-902, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21567610

RESUMO

On purpose to develop a polymer actuator with high stability in air-operation as well as large bending displacement, a series of ionic polymer-metal composites (IPMC) was constructed with poly(styrene sulfonate)-grafted fluoropolymers as ionomeric matrix and immidazolium-based ionic liquids (IL) as inner solvent. The prepared IPMC actuators exhibited greatly enhanced bending displacement compared to Nafion-based actuators. The actuators were stable in air-operation, maintaining initial displacement for up to 10(4) cycles or 24 h. Investigating the material parameters and morphology of the IPMCs, high ion exchange capacity of the ionomers resulted in high ion conductivity and robust electrode of IPMC, which synergistically contributed to the high bending performance.

2.
ACS Appl Mater Interfaces ; 9(26): 21998-22005, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28593763

RESUMO

Ionic polymer-metal composites (IPMCs) have been proposed as biomimetic actuators that are operable at low applied voltages. However, the bending strain and generating force of the IPMC actuators have generally exhibited a trade-off relationship, whereas simultaneous enhancement of both the qualities is required for their practical applications. Herein, a significant improvement in both the strain and force of the IPMC actuators is achieved by a facile approach, exploiting thickness-controlled ion-exchange membranes and nanodispersed metal electrodes. To guarantee a large generating force of the IPMC actuators, ultrathick ion-exchange membranes are prepared by stacking pre-extruded Nafion films. Metal electrodes with a nanodispersed structure are formed on the membranes via alcohol-assisted electroless plating, which allows increased capacitance and facilitated ion transport. The resulting actuators exhibit greatly enhanced electromechanical properties, including an approximately four times larger strain and two times larger force compared to those of actuators having the conventional structure. Moreover, the ability to lift 16 coins (a weight of 124 g) has been successfully demonstrated using ultrathick IPMC actuators, which shows great promise in realizing artificial muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA