Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871599

RESUMO

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células Caliciformes , Células-Tronco/fisiologia , Mucosa Intestinal/metabolismo , Diferenciação Celular/genética , Doenças Inflamatórias Intestinais/metabolismo , Colite/metabolismo
2.
Small ; : e2311461, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386310

RESUMO

PbS quantum dot (QD) solar cells harvest near-infrared solar radiation. Their conventional hole transport layer has limited hole collection efficiency due to energy level mismatch and poor film quality. Here, how to resolve these two issues by using Ag-doped PbS QDs are demonstrated. On the one hand, Ag doping relieves the compressive stress during layer deposition and thus improves film compactness and homogeneity to suppress leakage currents. On the other hand, Ag doping increases hole concentration, which aligns energy levels and increases hole mobility to boost hole collection. Increased hole concentration also broadens the depletion region of the active layer, decreasing interface charge accumulation and promoting carrier extraction efficiency. A champion power conversion efficiency of 12.42% is achieved by optimizing the hole transport layer in PbS QD solar cells, compared to 9.38% for control devices. Doping can be combined with compressive strain relief to optimize carrier concentration and energy levels in QDs, and even introduce other novel phenomena such as improved film quality.

3.
Inflamm Res ; 73(6): 1033-1046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630134

RESUMO

OBJECTIVE: Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS: The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS: SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION: PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.


Assuntos
Cardiomiopatias , Caspase 1 , Camundongos Knockout , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfolipase D , Piroptose , Sepse , Animais , Masculino , Camundongos , Ratos , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Caspase 1/metabolismo , Caspase 1/genética , Linhagem Celular , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Sepse/complicações , Sepse/genética , Transdução de Sinais
4.
Arterioscler Thromb Vasc Biol ; 43(2): 218-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353991

RESUMO

BACKGROUND: Myocardial cell death is the hallmark of myocardial infarction. In the process of myocardial injury, platelets contribute to the pathogenesis by triggering intense inflammatory responses. Yet, it is still unclear if platelets regulate cardiomyocyte death directly, thereby exacerbating myocardial injury in myocardial infarction. METHODS: We describe a mechanism underlying the correlative association between platelets accumulation and myocardial cell death by using myocardial infarction mouse model and patient specimens. RESULTS: Myocardial infarction induces platelets internalization, resulting in the release of miR-223-3p, a platelet-enriched miRNA. By targeting the ACSL3, miR-223-3p delivered by internalized platelets cause the reduction of stearic acid-phosphatidylcholine in cardiomyocytes. The presence of stearic acid-phosphatidylcholine protects cardiomyocytes against ferroptosis. CONCLUSIONS: Our work reveals a novel mechanism of platelet-mediated myocardial injury, highlighting antiplatelet therapies could potentially represent a multimechanism treatment of myocardial infarction, and implying ferroptosis being considered as novel target for therapeutics.


Assuntos
Ferroptose , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Plaquetas/metabolismo , Infarto do Miocárdio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Morte Celular , Miócitos Cardíacos/metabolismo
5.
Cell Mol Biol Lett ; 29(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172650

RESUMO

BACKGROUND: Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS: The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS: Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isoproterenol , Cardiomegalia/genética , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo
6.
Bioessays ; 44(6): e2100256, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355301

RESUMO

Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.


Assuntos
MicroRNAs , Síndrome de Linfonodos Mucocutâneos , RNA Longo não Codificante , Criança , Humanos , MicroRNAs/genética , Síndrome de Linfonodos Mucocutâneos/genética , RNA Circular , RNA Longo não Codificante/genética , RNA não Traduzido/genética
7.
J Cell Biochem ; 124(1): 118-126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436137

RESUMO

Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases in the world and has a strong genetic predisposition. At present, there is still no effective method for the early diagnosis and prevention of AD. Accumulating evidence shows the association of several loci with AD risk, such as apolipoprotein E (APOE) and translocase of outer mitochondrial membrane 40 (TOMM40). However, for routine disease diagnosis in clinics, genotype detection methods based on gene sequencing technology are time-consuming and excessively costly. Thus, in this study, we developed a high-sensitivity, low-cost, and convenient single nucleotide polymorphism (SNP) detection assay method based on allele-specific quantitative polymerase chain reaction (AS-qPCR) technology, which can be used to determine the SNP genotype in APOE and TOMM40. A total of 40 patients were recruited from the outpatient department of the memory clinic of Dongzhimen Hospital, Beijing University of Chinese Medicine. The SNP detection assay method includes three steps. First, positive plasmids with different genotypes (TT/CC/TC) in APOE rs429358, rs7412, and TOMM40 rs11556505 were prepared. Second, 3'-T/3'-C primers were designed to amplify these positive plasmids for each SNP site. Finally, we calculated the log10 of the copy number ratio for each positive plasmid, and the genotype interpretation interval was established. Based on this method, we investigated whether the SNPs in 40 patients could be accurately calculated using AS-qPCR technology. The accuracy of SNP detection was verified by PCR-Pooling sequencing. The results showed that SNP genotypes assessed by AS-qPCR technology corresponded perfectly to the results obtained by conventional DNA sequencing. We have developed a genotype detection method for AD based on AS-qPCR, which can be performed easily, rapidly, accurately, and at low cost. The method will contribute to the early diagnosis of patients with late-onset Alzheimer's and the detection of large clinical samples in the future.


Assuntos
Doença de Alzheimer , Polimorfismo de Nucleotídeo Único , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Alelos , Predisposição Genética para Doença , Genótipo , Apolipoproteínas E/genética
8.
Pharmacol Res ; 196: 106932, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37739144

RESUMO

Aortic dissection (AD) presents a medical challenge for clinicians. Here, to determine the role of a novel small non-coding piRNA-823 (piR-823) in AD, murine and human aorta from patients with AD were used. A high expression levels of piR-823 were found in patients with AD. Using performed loss- and gain-of-function assays in vitro and in vivo, we explore the regulatory effect of piR-823 on vascular smooth muscle cells (VSMCs) and AD. piR-823 obviously facilitates the proliferation, migration, and phenotypic transformation of VSMCs with or without nicotine treatment. piR-823 directly binds and suppresses histone deacetylase 1 (HDAC1) expression, and regulates the acetylation of histone 3 (H3) via H3K9ac and H3K27ac, eventually, VSMC functions and AD. To consolidate our findings, AD murine model was performed, and we observed that piR-823 antagomir strongly inhibited the pathogenesis of AD through regulating vascular remodeling. Thus, our study finds a potential target for the prevention and treatment strategy for nicotine-induced AD.


Assuntos
Dissecção Aórtica , RNA de Interação com Piwi , Humanos , Camundongos , Animais , Nicotina/farmacologia , Proliferação de Células , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/genética , Aorta , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
9.
Mol Ther ; 30(4): 1645-1660, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085814

RESUMO

Hepatoblastoma is the most common liver cancer in children, and the aggressive subtype often has a poor prognosis and lacks effective targeted therapy. Although aggressive hepatoblastoma (HB) is often accompanied by abnormally high expression of the transcription factor c-Myc, the underlying mechanism remains unclear. In this study, we found that mitochondrial fragmentation was enhanced by c-Myc overexpression in human aggressive HB tissues and was associated with poor prognosis. Then, a mouse model resembling human HB was established via hydrodynamic injection of c-Myc plasmids. We observed that liver-specific knockout of the mitochondrial fusion molecule MFN1 or overexpression of mitochondrial fission molecule DRP1 promoted the occurrence of c-Myc-driven liver cancer. In contrast, when MFN1 was overexpressed in the liver, tumor formation was delayed. In vitro experiments showed that c-Myc transcriptionally upregulated the expression of DRP1 and decreased MFN1 expression through upregulation of miR-373-3p. Moreover, enhanced mitochondrial fragmentation significantly promoted aerobic glycolysis and the proliferation of HB cells by significantly increasing reactive oxygen species (ROS) production and activating the RAC-alpha serine/threonine-protein kinase (AKT)/mammalian target of rapamycin (mTOR) and nuclear factor κB (NF-κB) pathways. Taken together, our results indicate that c-Myc-mediated mitochondrial fragmentation promotes the malignant transformation and progression of HB by activating ROS-mediated multi-oncogenic signaling.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , MicroRNAs , Animais , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patologia , Neoplasias Hepáticas/metabolismo , Mamíferos , Camundongos , Espécies Reativas de Oxigênio , Transdução de Sinais
10.
Mol Cell ; 59(1): 50-61, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26028536

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs, and they bind to complementary sequences in the three prime untranslated regions (3' UTRs) of target mRNA transcripts, thereby inhibiting mRNA translation or promoting mRNA degradation. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidative modification of macromolecules leading to their inappropriate functions. Such oxidative modification is related to cancers, aging, and neurodegenerative and cardiovascular diseases. Here we report that miRNAs can be oxidatively modified by ROS. We identified that miR-184 upon oxidative modification associates with the 3' UTRs of Bcl-xL and Bcl-w that are not its native targets. The mismatch of oxidized miR-184 with Bcl-xL and Bcl-w is involved in the initiation of apoptosis in the study with rat heart cell line H9c2 and mouse models. Our results reveal a model of ROS in regulating cellular events by oxidatively modifying miRNA.


Assuntos
Regiões 3' não Traduzidas/genética , MicroRNAs/metabolismo , Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miocárdio/citologia , Miocárdio/metabolismo , Oxirredução , Interferência de RNA , RNA Interferente Pequeno , Ratos
11.
J Mol Cell Cardiol ; 170: 100-114, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35728350

RESUMO

BACKGROUND: Aortic dissection (AD) is a lethal cardiac disorder and one of the most concerning cardiovascular diseases (CVDs). Increasing evidence indicates that human aortic vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of AD, especially related to phenotypic transformation. And notablely, the development of AD is also accompanied by inflammation. METHODS: By using quantitative real-time PCR and fluorescence in situ hybridization (FISH), we detected the expression levels of miR-564 in vitro and in vivo. The effects of miR-564 proliferation and migration were investigated in VSMCs. The downstream targets of miR-564 were found by bioinformatics analyse, and verified in the regulation on VSMCs. An AD murine model was constructed and clinical evaluation was performed to explore the critical roles of miR-564 in vivo. At the same time, the level of inflammation was detected using quantitative real-time PCR and immunofluorescence. RESULTS: Overexpression of miR-564 inhibited cell proliferation and migration, as well as phenotype switch, with or without platelet-derived growth factor BB (PDGF-BB) treatment, whereas downregulation of miR-564 led to opposite results. Mechanistically, miR-564 directly interacted with the target genes proto-oncogene (SKI) and neurogranin (NRGN) to regulate the biological functions of VSMCs. In particular, animal experiments demonstrated that miR-564 can alleviate the progression of AD mainly through mediating phenotypic swithing and inflammation which was consistent with clinical evaluation. CONCLUSIONS: Our study identified miR-564 as a significant molecule that attenuates AD progression by inhibiting inflammation and VSMCs proliferation, migration and phenotypic transformation, suggesting that it may be a potential therapeutic target for AD.


Assuntos
Dissecção Aórtica , MicroRNAs , Dissecção Aórtica/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Humanos , Hibridização in Situ Fluorescente , Inflamação/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo
12.
Mol Med ; 28(1): 132, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348274

RESUMO

Cancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers' understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.


Assuntos
Apoptose , Neoplasias , Humanos , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Apoptose/genética , Processos Neoplásicos , Neoplasias/genética , Transdução de Sinais
13.
BMC Microbiol ; 22(1): 148, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659248

RESUMO

BACKGROUND: The composition and diversity of root microbial community are affected by plant genotypes and soil environment, which in turn affect plant growth and development. Grafting rootstock types of the apple tree can affect phenotypes in cultivation practice, but it is not clear whether grafting rootstock types can affect the composition and diversity of root microbial community and the resistance of apple tree to apple Valsa canker. METHODS: To explore root microbial differences and the correlation, 16S rRNA and ITS genes were sequenced using Novaseq technology. RESULTS: The results showed that the influence of grafting rootstock types on the composition of the root fungal community was greater than that of bacteria. And the bacterial community richness was higher in the healthy (OTUs: 1693) and dwarfing rootstock (OTUs: 1526) than in the disease (OTUs: 1181) and standard rootstock (OTUs: 1412), while the fungal community richness was the opposite. Moreover, the bacterial abundance of root zone, rhizosphere, and root endophytic microorganisms with the same grafting rootstock type exhibited a decreasing trend. Results of Nested PCR assay on soil and root tissue of Valsa mali showed that the content of V. mali in dwarfing rootstocks are lower than standard rootstocks. These results suggest that apple trees grafting with dwarfing rootstocks are more resistant to V. mali than standard rootstocks. CONCLUSIONS: Under different grafting types, the effect on the composition of fungal community in apple tree root was greater than that of bacteria. The bacterial community in dwarfing rootstocks is more abundant and diverse, including more beneficial microorganisms. Therefore, dwarfing rootstock is more conducive to the resistance to apple Valsa canker from biological control.


Assuntos
Malus , Bactérias/genética , Malus/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo
14.
Cytotherapy ; 24(2): 93-100, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742629

RESUMO

Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.


Assuntos
Vesículas Extracelulares , Neoplasias , Doenças Neurodegenerativas , Sistemas de Liberação de Medicamentos , Humanos , Doenças Neurodegenerativas/diagnóstico , Fosfolipídeos/uso terapêutico
15.
Mol Biol Rep ; 49(4): 2619-2627, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35028853

RESUMO

BACKGROUND: Recent evidence suggested that histone deacetylase inhibitor (HDACi) could inhibit dendritic cell (DC) maturation. However, the mechanism is unclear. Here, we aimed to study whether Trichostatin A (TSA), the most widely studied HDACi, inhibits the maturation of DCs by down-regulating NF-κB (p65) pathway. METHODS AND RESULTS: Mouse bone marrow-derived DCs were cultured. Lipopolysaccharide (LPS) was applied as stimulation for maturation. Triptolide (TTL) was applied as p65 inhibitor. Microphotography and flow cytometry showed that TSA and p65 inhibitor separately inhibited the maturation of DCs stimulated by LPS from the aspects of cell morphology and cell phenotype. Mixed lymphocyte reaction test and ELISA showed that TSA and p65 inhibitor synergistically inhibited the proliferation of T lymphocytes stimulated by DCs, reduced the secretion of pro-inflammatory cytokine IL-12 and elevated the secretion of anti-inflammatory cytokine IL-10. Western blot and RT-qPCR showed that TSA down-regulated the expression of phosphorylated IκBα, phosphorylated-p65, Ikkß and Ikkγ, suggesting TSA down-regulates NF-κB (p65) pathway. CONCLUSIONS: TSA inhibits DC maturation through down-regulating NF-κB (p65) pathway.


Assuntos
Ácidos Hidroxâmicos , NF-kappa B , Animais , Células Dendríticas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo
16.
BMC Ophthalmol ; 22(1): 124, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35291979

RESUMO

PURPOSE: This study aimed to investigate the association of Demodex infestation with pediatric chalazia. METHODS: In a prospective study, 446 children with chalazia and 50 children with non-inflammatory eye disease (controls) who underwent surgical treatment were enrolled from December 2018 to December 2019. Patient ages ranged from 7 months to 13 years old. All patients underwent eyelash sampling for light microscope examination, and statistical correlation analysis between Demodex infestation and chalazia, including the occurrence, recurrence, and course of disease, morphological characteristics, and meibomian gland dysfunction (MGD) in chalazia patients was performed. RESULTS: Demodex was found in 236 (52.91%) patients with chalazia and zero control patients. Demodicosis was significantly more prevalent in chalazia patients than the control group (P < 1 × 10- 14). Recurrent chalazia (P = 0.006) and skin surface involvement (P = 0.029) were highly correlated with Demodex infestation. Demodicosis was also associated with multiple chalazia (P = .023) and MGD(P = .024). However, Demodex infestation was comparable in the course of disease (P = 0.15), seasonal change (P = 0.68) and blepharitis subgroups (P = 0.15). Within the group of chalazia patients who underwent surgical removal of cysts, 4 (0.9%) patients with concurrent demodicosis experienced recurrence. CONCLUSIONS: Demodex infestation was more prevalent in pediatric chalazia patients than healthy children, and was associated with recurrent and multiple chalazia. Demodicosis should be considered as a risk factor of chalazia. In children with chalazia, Demodex examination and comprehensive treatment of Demodex mites should be applied to potentially prevent recurrence.


Assuntos
Calázio , Infecções Oculares Parasitárias , Infestações por Ácaros , Ácaros , Animais , Calázio/complicações , Calázio/diagnóstico , Calázio/epidemiologia , Criança , Infecções Oculares Parasitárias/diagnóstico , Infecções Oculares Parasitárias/epidemiologia , Infecções Oculares Parasitárias/cirurgia , Humanos , Lactente , Infestações por Ácaros/complicações , Infestações por Ácaros/epidemiologia , Estudos Prospectivos
17.
J Biomech Eng ; 144(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166284

RESUMO

Computational hemodynamic modeling has been widely used in cardiovascular research and healthcare. However, the reliability of model predictions is largely dependent on the uncertainties of modeling parameters and boundary conditions, which should be carefully quantified and further reduced with available measurements. In this work, we focus on propagating and reducing the uncertainty of vascular geometries within a Bayesian framework. A novel deep learning (DL)-assisted parallel Markov chain Monte Carlo (MCMC) method is presented to enable efficient Bayesian posterior sampling and geometric uncertainty reduction. A DL model is built to approximate the geometry-to-hemodynamic map, which is trained actively using online data collected from parallel MCMC chains and utilized for early rejection of unlikely proposals to facilitate convergence with less expensive full-order model evaluations. Numerical studies on two-dimensional aortic flows are conducted to demonstrate the effectiveness and merit of the proposed method.


Assuntos
Aprendizado Profundo , Teorema de Bayes , Hemodinâmica , Método de Monte Carlo , Reprodutibilidade dos Testes , Incerteza
18.
J Biomech Eng ; 144(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171218

RESUMO

This paper proposes a deep learning-based generalized empirical flow model (EFM) that can provide a fast and accurate prediction of the glottal flow during normal phonation. The approach is based on the assumption that the vibration of the vocal folds can be represented by a universal kinematics equation (UKE), which is used to generate a glottal shape library. For each shape in the library, the ground truth values of the flow rate and pressure distribution are obtained from the high-fidelity Navier-Stokes (N-S) solution. A fully connected deep neural network (DNN) is then trained to build the empirical mapping between the shapes and the flow rate and pressure distributions. The obtained DNN-based EFM is coupled with a finite element method (FEM)-based solid dynamics solver for fluid-structure-interaction (FSI) simulation of phonation. The EFM is evaluated by comparing the N-S solutions in both static glottal shapes and FSI simulations. The results demonstrate a good prediction performance in accuracy and efficiency.


Assuntos
Aprendizado Profundo , Simulação por Computador , Glote , Modelos Biológicos , Fonação , Vibração , Prega Vocal
19.
J Cell Physiol ; 236(4): 2740-2755, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32914432

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors in China and the third leading cause of cancer-related death. Parkin has been shown to be a tumor suppressor in a variety of malignancies, including GC. However, the mechanism of Parkin in GC remains unclear. In this study, the low expression of Parkin in GC cells and patient tumor tissues was observed, and Parkin inhibited proliferation and migration of GC cells. Additionally, doxorubicin (DOX) upregulated the expression of Parkin and promoted its anticancer effect. Forkhead box O3 (FOXO3a) is a crucial transcription factor that involves in the regulation of cancer cell proliferation, apoptosis, and metabolism. Here, we found that FOXO3a inhibits cell proliferation, migration, and promotes apoptosis in GC by regulating Parkin expression at the transcriptional level. In addition, Parkin inhibited cell proliferation, migration, and promoted apoptosis by inhibiting ATP-binding box protein E1 (ABCE1) expression. In summary, our results demonstrated a new regulatory axis of FOXO3a-Parkin-ABCE1 that modulated GC cell proliferation, migration, and apoptosis, and it can serve as a potential therapeutic target in GC.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína Forkhead Box O3/metabolismo , Neoplasias Gástricas/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antibióticos Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Doxorrubicina/farmacologia , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/genética
20.
BMC Genomics ; 22(1): 850, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819030

RESUMO

BACKGROUND: The detection and identification of single nucleotide polymorphism (SNP) is essential for determining patient disease susceptibility and the delivery of medicines targeted to the individual. At present, SNP genotyping technology includes Sanger sequencing, TaqMan-probe quantitative polymerase chain reaction (qPCR), amplification-refractory mutation system (ARMS)-PCR, and Kompetitive Allele-Specific PCR (KASP). However, these technologies have some disadvantages: the high cost of development and detection, long and time consuming protocols, and high false positive rates. Focusing on these limitations, we proposed a new SNP detection method named universal probe-based intermediate primer-triggered qPCR (UPIP-qPCR). In this method, only two types of fluorescence-labeled probes were used for SNP genotyping, thus greatly reducing the cost of development and detection for SNP genotyping. RESULTS: In the amplification process of UPIP-qPCR, unlabeled intermediate primers with template-specific recognition functions could trigger probe hydrolysis and specific signal release. UPIP-qPCR can be used successfully and widely for SNP genotyping. The sensitivity of UPIP-qPCR in SNP genotyping was 0.01 ng, the call rate was more than 99.1%, and the accuracy was more than 99.9%. High-throughput DNA microarrays based on intermediate primers can be used for SNP genotyping. CONCLUSION: This novel approach is both cost effective and highly accurate; it is a reliable SNP genotyping method that would serve the needs of the clinician in the provision of targeted medicine.


Assuntos
Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Alelos , Genótipo , Humanos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA