Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(12): 1396-1402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396958

RESUMO

Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.

2.
J Am Chem Soc ; 142(47): 20071-20079, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196182

RESUMO

Defect passivation constitutes one of the most commonly used strategies to fabricate highly efficient perovskite solar cells (PSCs). However, the durability of the passivation effects under harsh operational conditions has not been extensively studied regardless of the weak and vulnerable secondary bonding between the molecular passivation agents and perovskite crystals. Here, we incorporated strategically designed passivating agents to investigate the effect of their interaction energies on the perovskite crystals and correlated these with the performance and longevity of the passivation effects. We unraveled that the passivation agents with a stronger interaction energy are advantageous not only for effective defect passivation but also to suppress defect migration. The prototypical PSCs treated with the optimal passivation agent exhibited superior performance and operational stability, retaining 81.9 and 85.3% of their initial performance under continuous illumination or nitrogen at 85 °C after 1008 h, respectively, while the reference device completely degraded during that time. This work provides important insights into designing operationally durable defect passivation agents for perovskite optoelectronic devices.

3.
ChemSusChem ; 17(12): e202301497, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446050

RESUMO

Interface modification and bulk doping are two major strategies to improve the photovoltaic performance of perovskite solar cells (PSCs). Dipolar molecules are highly favored due to their unique dipolarity. This review discusses the basic concepts and characteristics of dipoles. In addition, the role of dipoles in PSCs and the corresponding conventional characterization methods for dipoles are introduced. Then, we systematically summarize the latest progress in achieving efficient and stable PSCs in dipole materials at several key interfaces. Finally, we look forward to the future application directions of dipole molecules in PSCs, aiming at providing deep insight and inspiration for developing efficient and stable PSCs.

4.
ACS Appl Mater Interfaces ; 16(1): 476-484, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38155099

RESUMO

Antisolvent engineering is routinely used to modulate the crystallization of perovskite films as they can offer an additional driving force for nucleation. Actually, the intervention of antisolvent into nucleation is thought to involve some relatively fast and complex processes, which, however, are not fully understood so far. Here, the diffusion of the organic amine cation FA+ (one dominated precursor) and its distribution in a spin-coating process in different antisolvents is simulated by the computational fluid dynamics (CFD) model. It is suggested that a moderate diffusion rate (like that in the case of toluene as an antisolvent) not only enables to form a very uniform distribution of FA+ ions on the substrate, beneficial to the uniform nucleation of the intermediate phase, but also can balance the nucleation and growth rates of the intermediate phase, thereby suppressing undesired heterogeneous nucleation and growth. Results show that the perovskite film fabricated using toluene as an antisolvent has a high quality, based on which higher power conversion efficiencies of up to 24.32% are achieved for perovskite solar cells.

5.
ChemSusChem ; : e202400038, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771426

RESUMO

Perovskite solar cells (PSCs) are usually modified and passivated to improve their performance and stability. The interface modification and bulk doping are the two basic strategies. Fluorine (F)-containing materials are highly favored because of their unique hydrophobicity and coordination ability. This review discusses the basic characteristics of F, and the basic principles of improving the photovoltaic performance and stability of PSC devices using F-containing materials. We systematically summarized the latest progress in the application of F-containing materials to achieve efficient and stable PSCs on several key interface layers. It is believed that this work will afford significant understanding and inspirations toward the future application directions of F-containing materials in PSCs, and provide profound insights for the development of efficient and stable PSCs.

6.
J Phys Chem Lett ; 14(3): 653-662, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36637234

RESUMO

Defect passivation through Lewis acid-base chemistry has recently attracted significant interest because of its proven ability to improve the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). However, tedious trial-and-error procedures are commonly used for the selection of Lewis molecules due to their abundant variety. Herein, two typical Lewis base molecules, the M molecule containing only carbonyl groups and the 3M molecule containing both carbonyl and carboxyl groups, are proposed to passivate the Pb-based defects and mitigate their negative impacts on PSC performance. The results indicated that much stronger coordination bonds can be formed between the 3M molecule and uncoordinated Pb2+ than with the M molecule. Because of the benefit from the synergetic co-passivation effect of carbonyl and carboxyl groups, an impressive maximum PCE of 24.07% was achieved via 3M modification. More importantly, the modified devices demonstrated remarkably improved operational stability.

7.
ACS Appl Mater Interfaces ; 14(14): 16920-16927, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352929

RESUMO

Interfacial passivation engineering plays a crucial role in the explosive development of perovskite solar cells (PSCs). However, previous studies on passivation layers mainly focused on the defect-passivation mechanism rather than the interfacial charge transport efficiency. Here, by precisely tuning the interplanar spacing of the ammonium iodide passivation layer, we elucidate the promoting effect of the reduced interplanar spacing of the passivation layer on the photogenerated hole tunneling efficiency at the interface of the hole transport layer and perovskite. Compared with the commonly used phenethylammonium iodide passivation layer with a wider interplanar spacing, 2-chlorobenzylammonium iodide with a narrower interplanar spacing can help break through the thickness limitation of the passivation layer, thus showing a better comprehensive passivation effect. Therefore, we demonstrate photovoltaic devices with an enhanced fill factor (FF) and open-circuit voltage (VOC), which yield a high power conversion efficiency (PCE) of up to 23.1%. We thus identify an efficient scheme to achieve optimal passivation conditions for high-performance PSCs.

8.
ACS Nano ; 16(1): 1231-1238, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34932319

RESUMO

Semitransparent organic photovoltaics (OPVs) have drawn significant attention for their promising potential in the field of building integrated photovoltaics such as energy-generating greenhouses. However, the conflict between the need to attain satisfying average visible transmittances for greenhouse applications and the need to maintain high power conversion efficiencies is limiting the commercialization of semitransparent OPVs. A major manifestation of this issue is the undermining of charge carrier extraction efficiency when opaque, visible-light-absorbing electrodes are substituted with semitransparent ones. Here, we incorporated a dual-function p-type compatible interlayer to modify the interface of the hole-transporting layer and the ultrathin electrode of the semitransparent devices. We find that the p-type interlayer not only enhances the charge carrier extraction of the electrode but also increases the light transmittance in the wavelength range of 400-450 nm, which covers most of the photosynthetic absorption spectrum. The modified semitransparent devices reach a power conversion efficiency of 13.7% and an average visible transmittance of 22.2%.

9.
ACS Appl Mater Interfaces ; 13(47): 56265-56272, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792324

RESUMO

In perovskite solar cells (PSCs), the hole-transport layer (HTL) plays an essential role in effective charge transport and extraction from the photoexcited perovskite, thus being significant for overall power conversion efficiency (PCE) and operational stability. So far, spiro-MeOTAD has been the most widely used HTL despite its inherent drawbacks, such as highly hygroscopic nature, poor conductivity, and mismatched energy-level alignment with the perovskite active layer. Here, a spiro-MeOTAD-based composite HTL modified by microwave method-synthesized carbon quantum dots (CQDs) was proposed and demonstrated as a promising HTL candidate for high-performance PSCs. The results demonstrated that the CQDs/spiro-MeOTAD composite HTL possesses several appealing characteristics for PSC applications, such as suitable energy levels for hole extraction, passivated interfacial trap states, and reduced recombination losses. Consequently, as compared to the control one using an unmodified spiro-MeOTAD HTL, (FAPbI3)0.95(MAPbBr3)0.05-based planar PSCs with composite HTL exhibit notably enhanced PCE and operational stability. Remarkably, an encouraging PCE of 20.41% was achieved for the champion device, and much improved operational stability was also demonstrated under continuous AM1.5 illumination with maximum power point (MPP) tracking conditions.

10.
J Healthc Eng ; 2021: 6706464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938420

RESUMO

Objective: To explore the intervention effect of early goal-directed therapy (EGDT) combined with meticulous nursing on patients with posttraumatic sepsis. Methods: The data of 50 patients with posttraumatic sepsis undergoing EGDT in the emergency department of our hospital from January 2020 to December 2020 were retrospectively analyzed. According to different nursing methods, they were divided into control group (n = 25) with routine nursing measures and observation group (n = 25) with meticulous nursing measures. The application effect of the two nursing modes was scientifically evaluated. Results: No statistical differences in general data were found between the two groups (P > 0.05). After 6 h of intervention, the circulatory function, oxygenation function, and renal function of both groups were better than those before intervention, and central venous pressure (CVP), mean arterial pressure (MAP), blood oxygen (PaO2), oxygenation index (PaO2/FiO2), central venous oxygen saturation (ScvO2), and urine volume in the observation group were notably higher than those in the control group (P < 0.05). The heart rate (HR), serum creatinine (SCr), and blood lactic acid in the observation group were notably lower than those in the control group (P < 0.05). The 28-day survival rate and quality of life after intervention in the observation group were notably higher than those in the control group, with obvious differences between the two groups (P < 0.05). Conclusion: Meticulous nursing intervention for patients with posttraumatic sepsis undergoing EGDT can effectively improve the body's functional indexes, which is superior to the routine nursing in controlling the patients' condition, improving the survival rate and quality of life after intervention, and ensuring the clinical treatment effect. Therefore, it is worthy of promotion.


Assuntos
Terapia Precoce Guiada por Metas , Sepse , Choque Séptico , Hidratação/métodos , Humanos , Qualidade de Vida , Estudos Retrospectivos , Sepse/terapia , Choque Séptico/terapia , Resultado do Tratamento
11.
Adv Mater ; 32(17): e1907769, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32147861

RESUMO

Intrinsically, detrimental defects accumulating at the surface and grain boundaries limit both the performance and stability of perovskite solar cells. Small molecules and bulkier polymers with functional groups are utilized to passivate these ionic defects but usually suffer from volatility and precipitation issues, respectively. Here, starting from the addition of small monomers in the PbI2 precursor, a polymerization-assisted grain growth strategy is introduced in the sequential deposition method. With a polymerization process triggered during the PbI2 film annealing, the bulkier polymers formed will be adhered to the grain boundaries, retaining the previously established interactions with PbI2 . After perovskite formation, the polymers anchored on the boundaries can effectively passivate undercoordinated lead ions and reduce the defect density. As a result, a champion power conversion efficiency (PCE) of 23.0% is obtained, together with a prolonged lifetime where 85.7% and 91.8% of the initial PCE remain after 504 h continuous illumination and 2208 h shelf storage, respectively.

12.
Adv Mater ; 32(11): e1906995, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017283

RESUMO

The operational instability of perovskite solar cells (PSCs) is known to mainly originate from the migration of ionic species (or charged defects) under a potential gradient. Compositional engineering of the "A" site cation of the ABX3 perovskite structure has been shown to be an effective route to improve the stability of PSCs. Here, the effect of size-mismatch-induced lattice distortions on the ion migration energetics and operational stability of PSCs is investigated. It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence. Consequently, the mixed composition devices exhibit significantly improved thermal stability under continuous heating at 85 °C and operational stability under continuous 1 sun illumination, with an extrapolated lifetime of 2011 h, compared to the 222 h of the reference device.

13.
ACS Appl Mater Interfaces ; 11(3): 2989-2996, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30585718

RESUMO

The overall performance of perovskite solar cells (PSCs) depends particularly on the chemical composition and crystalline quality of the perovskite light harvester. Here, the well-crystallized mixed-cation lead mixed-halide perovskite films with the optimized composition of FA0.85MA0.15Pb(I0.8Br0.2)3 were achieved by antisolvent-assisted single-step spin-coating in ambient conditions. The resulting PSCs with the well-crystallized FA0.85MA0.15Pb(I0.8Br0.2)3 exhibit impressive power conversion efficiency (PCE) over 20% under standard AM 1.5 illumination with excellent reproducibility. Remarkably, no perceivable degradation in PCE was detected from the PSCs stored in ambient conditions without any encapsulation after 7000 h (nearly 300 days), which was among the best shelf stability ever reported for PSCs. The superior performance was mainly attributed to the improved structural quality of the FA0.85MA0.15Pb(I0.8Br0.2)3 layer with reduced grain boundaries, reduced trap-state density, and prolonged carrier lifetime, as well as the better intrinsic stability of the mixed perovskite with an optimized composition.

14.
Adv Mater ; 31(37): e1900111, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31343086

RESUMO

Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.

15.
Science ; 366(6472): 1509-1513, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857483

RESUMO

Surface trap-mediated nonradiative charge recombination is a major limit to achieving high-efficiency metal-halide perovskite photovoltaics. The ionic character of perovskite lattice has enabled molecular defect passivation approaches through interaction between functional groups and defects. However, a lack of in-depth understanding of how the molecular configuration influences the passivation effectiveness is a challenge to rational molecule design. Here, the chemical environment of a functional group that is activated for defect passivation was systematically investigated with theophylline, caffeine, and theobromine. When N-H and C=O were in an optimal configuration in the molecule, hydrogen-bond formation between N-H and I (iodine) assisted the primary C=O binding with the antisite Pb (lead) defect to maximize surface-defect binding. A stabilized power conversion efficiency of 22.6% of photovoltaic device was demonstrated with theophylline treatment.

16.
ACS Appl Mater Interfaces ; 10(37): 31755-31764, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136568

RESUMO

Solar-to-electricity conversion efficiency, power conversion efficiency (PCE), and stability are two important aspects of perovskite solar cells (PSCs). However, both aspects are difficult to simultaneously enhance. In the recent two years, two-dimensional (2D)/three-dimensional (3D) stacking structure, designed by covering the 3D perovskite with a thin 2D perovskite capping layer, was reported to be a promising method to achieve both a higher PCE and improved stability simultaneously. However, when reducing the surface defects of 3D perovskite, the thin 2D capping layer itself may probably introduce additional interfacial defects in a 2D/3D stacking structure, which is thought to be able to trigger trap-assisted nonradiative recombination or ion migration. Thus, efforts should be paid to reduce the interfacial defects of 2D hybrid perovskite when serving as a modification layer in a 2D/3D stacking structure PSCs. Here, we demonstrate that bromine (Br) doping of the 2D perovskite capping layer is an efficient strategy to passivate interfacial defects robustly, by which the photoluminescence lifetime is enhanced notably, whereas the interfacial charge recombination is suppressed a lot. As a result, the PCE is enhanced from 18.01% (3D perovskite) to 20.07% (Br-doped 2D/3D perovskite) along with improved moisture stability.

17.
Materials (Basel) ; 10(3)2017 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-28772673

RESUMO

Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA