Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
2.
Plant Cell ; 35(12): 4266-4283, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37668409

RESUMO

Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.


Assuntos
Frutas , Solanum lycopersicum , Humanos , Frutas/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
3.
Plant Cell ; 34(1): 10-52, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633455

RESUMO

In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Plantas/metabolismo , Organelas/metabolismo , Células Vegetais/metabolismo
4.
Plant J ; 114(6): 1353-1368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942473

RESUMO

Pumpkin is often used as a rootstock for other Cucurbitaceae crops due to its resistance to soil-borne diseases and abiotic stress. Pumpkin rootstocks use a sodium transporter (CmHKT1;1) to promote the transport of Na+ from the shoot to the root effectively and improve the salt tolerance of the scion. However, the molecular regulatory mechanisms that influence the activity of CmHKT1;1 during salt stress response remain unknown. In this study, CmCNIH1, a cornichon homolog, was identified as a potential cargo receptor for CmHKT1;1. Yeast two-hybrid, biomolecular fluorescence complementation and luciferase complementary assays demonstrated that CmCNIH1 and CmHKT1;1 could interact. CmCNIH1 was a key component of the cellular vesicle transport machinery located in the endoplasmic reticulum (ER), ER export site and Golgi apparatus. A CmCNIH1 knockout mutant was more sensitive to salt stress than the wild-type (WT). In addition, ion homeostasis was disrupted in cmcnih1 mutants, which had higher Na+ and lower K+ content in shoots and roots than the WT. Two-electrode voltage-clamp experiment displayed that CmCNIH1 could not influence the Na+ current that passed through the plasma membrane (PM) in CmHKT1;1-expressing Xenopus laevis oocytes. Data from co-localization assays indicated that intact CmCNIH1 protein could alter the subcellular localization of CmHKT1;1 in tobacco leaf, pumpkin root and yeast. In summary, CmCNIH1 may function as a cargo receptor that regulates the localization of CmHKT1;1 to the PM to improve salt tolerance in pumpkin.


Assuntos
Cucurbita , Cucurbita/metabolismo , Tolerância ao Sal , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant J ; 113(5): 969-985, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587293

RESUMO

Folate (vitamin B9) is important for plant root development, but the mechanism is largely unknown. Here we characterized a root defective mutant, folb2, in Arabidopsis, which has severe developmental defects in the primary root. The root apical meristem of the folb2 mutant is impaired, and adventitious roots are frequently found at the root-hypocotyl junction. Positional cloning revealed that a 61-bp deletion is present in the predicted junction region of the promoter and the 5' untranslated region of AtFolB2, a gene encoding a dihydroneopterin aldolase that functions in folate biosynthesis. This mutation leads to a significant reduction in the transcript level of AtFolB2. Liquid chromatography-mass spectrometry analysis showed that the contents of the selected folate compounds were decreased in folb2. Arabidopsis AtFolB2 knockdown lines phenocopy the folb2 mutant. On the other hand, the application of exogenous 5-formyltetrahydrofolic acid could rescue the root phenotype of folb2, indicating that the root phenotype is indeed related to the folate level. Further analysis revealed that folate could promote rootward auxin transport through auxin transporters and that folate may affect particular auxin/indole-3-acetic acid proteins and auxin response factors. Our findings provide new insights into the important role of folic acid in shaping root structure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Meristema/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
6.
J Microsc ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297985

RESUMO

The degradation and turnover of mitochondria is fundamental to Eukaryotes and is a key homeostatic mechanism for maintaining functional mitochondrial populations. Autophagy is an important pathway by which mitochondria are degraded, involving their sequestration into membrane-bound autophagosomes and targeting to lytic endosomal compartments (the lysosome in animals, the vacuole in plants and yeast). Selective targeting of mitochondria for autophagy, also known as mitophagy, distinguishes mitochondria from other cell components for degradation and is necessary for the regulation of mitochondria-specific cell processes. In mammals and yeast, mitophagy has been well characterised and is regulated by numerous pathways with diverse and important functions in the regulation of cell homeostasis, metabolism and responses to specific stresses. In contrast, we are only just beginning to understand the importance and functions of mitophagy in plants, chiefly as the proteins that target mitochondria for autophagy in plants are only recently emerging. Here, we discuss the current progress of our understanding of mitophagy in plants, the importance of mitophagy for plant life and the regulatory autophagy proteins involved in mitochondrial degradation. In particular, we will discuss the recent emergence of mitophagy receptor proteins that selectively target mitochondria for autophagy, and discuss the missing links in our knowledge of mitophagy-regulatory proteins in plants compared to animals and yeast.

8.
BMC Musculoskelet Disord ; 25(1): 203, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454411

RESUMO

BACKGROUND: This study aimed to determine if the hybrid short-segment (HSS) technique is a good alternative to the intermediate-segment (IS) and long-segment (LS) techniques in pedicle screw fixations for acute thoracolumbar burst fractures (TLBFs). METHODS: In this retrospective evaluation, we examined 43 patients who underwent surgical treatments, including one- or two-level suprajacent (U) and infrajacent (L) pedicle screw fixations, for acute single-level TLBFs with neurological deficits between the T11 and L2 levels from July 2013 to December 2019. Among these patients, 15 individuals underwent HSS (U1L1), 12 received IS (U2L1), and 16 underwent LS (U2L2) fixations. Supplemental kyphoplasty of the fractured vertebral bodies was performed exclusively in the HSS group. Our analysis focused on assessing blood loss and surgical duration. Additionally, we compared postoperative thoracolumbar kyphotic degeneration using the data on Cobb angles on lateral radiographic images acquired at three time points (preoperatively, postoperative day 1, and follow-up). The end of follow-up was defined as the most recent postoperative radiographic image or implant complication occurrence. RESULTS: Blood loss and surgical duration were significantly lower in the HSS group than in the IS and LS groups. Additionally, the HSS group exhibited the lowest implant complication rate (2/15, 13.33%), followed by the LS (6/16, 37.5%) and IS (8/12, 66.7%) group. Implant complications occurred at a mean follow-up of 7.5 (range: 6-9), 9 (range: 5-23), and 7 (range: 1-21) months in the HSS, IS, and LS groups. Among these implant complications, revision surgeries were performed in two patients in the HSS group, two in the IS group, and one in the LS group. One patient treated by HSS with balloon kyphoplasty underwent reoperation because of symptomatic cement leakage. CONCLUSIONS: The HSS technique reduced intraoperative blood loss, surgical duration, and postoperative implant complications, indicating it is a good alternative to the IS and LS techniques for treating acute single-level TLBFs. This technique facilitates immediate kyphosis correction and successful maintenance of the corrected alignment within 1 year. Supplemental kyphoplasty with SpineJack® devices and high-viscosity bone cements for anterior reconstruction can potentially decrease the risk of cement leakage and related issues.


Assuntos
Fraturas Cominutivas , Fraturas por Compressão , Cifoplastia , Cifose , Parafusos Pediculares , Fraturas da Coluna Vertebral , Humanos , Parafusos Pediculares/efeitos adversos , Cifoplastia/efeitos adversos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/complicações , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Vértebras Lombares/lesões , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Vértebras Torácicas/lesões , Fraturas por Compressão/cirurgia , Cimentos Ósseos/uso terapêutico , Cifose/diagnóstico por imagem , Cifose/cirurgia , Cifose/complicações , Complicações Pós-Operatórias/etiologia , Resultado do Tratamento
9.
J Formos Med Assoc ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423925

RESUMO

BACKGROUND/PURPOSE: Depressive and anxiety symptoms were common among lesbian, gay, and bisexual (LGB) individuals during the COVID-19 pandemic. This 4-year follow-up study was conducted to investigate the predictors of depressive and anxiety symptoms in Taiwan's young adult LGB population. METHODS: Baseline data, including depressive and anxiety symptoms, demographic characteristics, sexual stigma, self-identity confusion, and family support were collected from 1000 LGB individuals. The participants' depressive and anxiety symptoms were reassessed 4 years after the baseline measurements. The predictive effects of the baseline factors on depressive and anxiety symptoms at follow-up were examined through linear regression analysis. RESULTS: Greater lack of identity, unconsolidated identity, sexual orientation microaggression, and lower perceived family function at baseline were significantly associated with more severe depressive and anxiety symptoms at follow-up. After adjustment for baseline depressive symptoms, being men, greater lack of identity, lower perceived family function, and more severe anxiety symptoms at baseline were significantly associated with more severe depressive symptoms at follow-up. After adjustment for baseline anxiety symptoms, greater unconsolidated identity and more severe depressive symptoms at baseline were significantly associated with more severe anxiety symptoms at follow-up. CONCLUSIONS: Intervention aimed at reducing depressive and anxiety symptoms in LGB individuals should be developed considering the predictors identified in this study.

10.
New Phytol ; 238(2): 482-499, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651025

RESUMO

Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.


Assuntos
Retículo Endoplasmático , Eucariotos , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Eucariotos/metabolismo , Membranas Mitocondriais , Transdução de Sinais
11.
Synapse ; 77(4): e22268, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36941024

RESUMO

Vascular dementia (VaD) is a prevalent cause of dementia after Alzheimer's disease. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUCMSC-Evs) are critical for VaD treatment. We explored the mechanism of hUCMSC-Evs in VaD. VaD rat model was established by bilateral common carotid artery ligation and hUCMSC-Evs were extracted. VaD rats were injected with Evs through the tail vein. Rat neurological scores, neural behaviors, memory and learning abilities, brain tissue pathological changes, and neurological impairment were evaluated by Zea-Longa method, Morris water maze tests, HE staining, and ELISA (through acetylcholine [ACH] and dopamine [DA] assessment). Microglia M1/M2 polarization was detected by immunofluorescence staining. Pro-/anti-inflammatory factor levels in brain tissue homogenate, oxidative stress-related indicators, and p-PI3K, PI3K, p-AKT, AKT, and Nrf2 protein levels were determined by ELISA, kits, and Western blot. VaD rats were jointly treated with PI3K phosphorylation inhibitor Ly294002 and hUCMSC-Evs. VaD rats manifested increased neurological function injury scores, decreased cognitive function and learning ability, abnormal brain structure, obvious inflammatory infiltration, diminished ACH and DA levels, increased microglial cells and M1-polarized cells, M1/M2 polarization ratio, inflammation, and oxidative stress. hUCMSC-Evs alleviated the neurological damage of VaD rats, inhibited M1 polarization, inflammation, and oxidative stress of microglial cells in brain tissues of VaD rats, and activated the PI3K/AKT/Nrf2 pathway. Ly294002 partially averted the effects of hUCMSC-Evs on microglial polarization, inflammation, and oxidative stress. Briefly, hUCMSC-Evs activated the PI3K/AKT/Nrf2 pathway and inhibited microglial M1 polarization, inflammation, and oxidative stress, thus protecting VaD rat nerve functions.


Assuntos
Demência Vascular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Demência Vascular/terapia , Demência Vascular/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
12.
J Microsc ; 291(1): 105-118, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35985796

RESUMO

The actin cytoskeleton is the driver of gross ER remodelling and the movement and positioning of other membrane-bound organelles such as Golgi bodies. Rapid ER membrane remodelling is a feature of most plant cells and is important for normal cellular processes, including targeted secretion, immunity and signalling. Modifications to the actin cytoskeleton through pharmacological agents such as Latrunculin B and phalloidin, or disruption of normal myosin function also affect ER structure and/or dynamics. Here, we investigate the impact of changes in the actin cytoskeleton on structure and dynamics on the ER as well as in return the impact of modified ER structure on the architecture of the actin cytoskeleton. By expressing actin markers that affect actin dynamics, or expressing of ER-shaping proteins that influence ER architecture, we found that the structure of ER-actin networks is closely inter-related; affecting one component is likely to have a direct effect on the other. Therefore, our results indicate that a complicated regulatory machinery and cross-talk between these two structures must exist in plants to co-ordinate the function of ER-actin network during multiple subcellular processes. In addition, when considering organelle structure and dynamics, the choice of actin marker is essential in preventing off-target organelle structure and dynamics modifications.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Plantas/metabolismo
13.
Pulm Pharmacol Ther ; 78: 102182, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460268

RESUMO

BACKGROUND: Oral non-prostanoid prostacyclin receptor agonists therapies have been recommended for pulmonary arterial hypertension in many countries. OBJECTIVE: We aimed to evaluate the specific impact of non-prostanoid prostacyclin receptor agonists on pulmonary hypertension and to explore the influence of study characteristics on results. METHODS: PubMed, Embase, and ClinicalTrials.gov were systematically searched from inception to July 12, 2022. Randomized controlled trials comparing non-prostanoid prostacyclin receptor agonists administration with placebo for treating pulmonary hypertension were included. Two researchers independently selected eligible studies, assessed the bias risk and extracted related data. RevMan5.1 was used for performing the statistical analysis and the assessment of bias risk of the enrolled studies. PROSPERO registered number CRD42022304172. RESULTS: Seven trials involving 1727 patients were included. Pooled analyses indicated non-prostanoid prostacyclin receptor agonists significantly reduced clinical worsening events (risk ratio [RR], 0.63; 95% confidence interval [CI], 0.54 to 0.74), increased 6-min walk distance (mean difference [MD], 10 m; 95% CI, 3-17 m), decreased pulmonary vascular resistance (MD, -121 dyn s/cm5; 95% CI, -172 to -69 dyn s/cm5) and increased cardiac index (MD, 0.38 L/min/m2; 95% CI, 0.26-0.50 L/min/m2) compared with the control. No significant differences in all-cause mortality (RR, 0.86; 95% CI, 0.26 to 2.78), NYHA/WHO functional class (RR, 1.16; 95% CI, 0.61 to 2.18), mean pulmonary artery pressure (MD, -0.88 mmHg; 95% CI, -2.20 to 0.44 mmHg), right atrial pressure (MD, 0.66 mmHg; 95% CI, -0.59 to 1.90 mmHg) and total adverse events (RR, 1.05; 95% CI, 0.99 to 1.10) were found between non-prostanoid prostacyclin receptor agonists group and control group. CONCLUSION: Non-prostanoid prostacyclin receptor agonists treatment exerted benefits on clinical worsening, pulmonary vascular resistance, and cardiac index in pulmonary hypertension patients, without increasing the incidence of total adverse events.


Assuntos
Hipertensão Pulmonar , Humanos , Epoprostenol/efeitos adversos , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Receptores de Epoprostenol
14.
Proc Natl Acad Sci U S A ; 117(18): 9884-9895, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321832

RESUMO

The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Transporte Proteico/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vesículas Citoplasmáticas/genética , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Corpos Multivesiculares/genética , Corpos Multivesiculares/metabolismo , Mutação , Vacúolos/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Biochem Genet ; 61(3): 916-930, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36227424

RESUMO

Vascular dementia (VaD) is the second most common subtype of dementia, but the precise mechanism underlying VaD is not fully understood. Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) can act as a key regulator in physiological and pathological processes, including neurological disorders, but whether it is correlated with VaD has not been elucidated. In this study, we established a mouse model of VaD by the transient bilateral common carotid artery occlusion surgery. As expected, the Morris water maze showed that VaD mice had significant deficits in spatial learning and memory. MALAT1 was elevated in the hippocampus of VaD mice. Additionally, we found that microRNA (miR)-9-3p was downregulated in the VaD hippocampus. By performing a dual-luciferase report assay, we verified the binding relationship between MALAT1 and miR-9-3p. Interestingly, synapse-associated protein-97 (SAP97), a well-known gene related to synaptic functions, was found upregulated in the hippocampus of VaD mice. In vitro experiments performed on hippocampal neurons demonstrated that miR-9-3p negatively regulated SAP97 expression. The downregulation of MALAT1 in hippocampal neurons increased miR-9-3p and reduced SAP97, whereas miR-9-3p inhibition rescued the MALAT1 downregulation-mediated SAP97 reduction. In conclusion, the present study reported the alterations in the expression levels of MALAT1, miR-9-3p, and SAP97 in the hippocampus of VaD mice, suggesting that MALAT1 targets miR-9-3p to upregulate SAP97 in the hippocampus of mice with VaD. This work will be helpful for understanding the molecular mechanisms of VaD.


Assuntos
Demência Vascular , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Demência Vascular/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Hipocampo/metabolismo
16.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836981

RESUMO

To meet the real-time path planning requirements of intelligent vehicles in dynamic traffic scenarios, a path planning and evaluation method is proposed in this paper. Firstly, based on the B-spline algorithm and four-stage lane-changing theory, an obstacle avoidance path planning algorithm framework is constructed. Then, to obtain the optimal real-time path, a comprehensive real-time path evaluation mechanism that includes path safety, smoothness, and comfort is established. Finally, to verify the proposed approach, co-simulation and real vehicle testing are conducted. In the dynamic obstacle avoidance scenario simulation, the lateral acceleration, yaw angle, yaw rate, and roll angle fluctuation ranges of the ego-vehicle are ±2.39 m/s2, ±13.31°, ±13.26°/s, and ±0.938°, respectively. The results show that the proposed algorithm can generate real-time, available obstacle avoidance paths. And the proposed evaluation mechanism can find the optimal path for the current scenario.

17.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430834

RESUMO

Road obstacle detection is an important component of intelligent assisted driving technology. Existing obstacle detection methods ignore the important direction of generalized obstacle detection. This paper proposes an obstacle detection method based on the fusion of roadside units and vehicle mounted cameras and illustrates the feasibility of a combined monocular camera inertial measurement unit (IMU) and roadside unit (RSU) detection method. A generalized obstacle detection method based on vision IMU is combined with a roadside unit obstacle detection method based on a background difference method to achieve generalized obstacle classification while reducing the spatial complexity of the detection area. In the generalized obstacle recognition stage, a VIDAR (Vision-IMU based identification and ranging) -based generalized obstacle recognition method is proposed. The problem of the low accuracy of obstacle information acquisition in the driving environment where generalized obstacles exist is solved. For generalized obstacles that cannot be detected by the roadside unit, VIDAR obstacle detection is performed on the target generalized obstacles through the vehicle terminal camera, and the detection result information is transmitted to the roadside device terminal through the UDP (User Data Protocol) protocol to achieve obstacle recognition and pseudo-obstacle removal, thereby reducing the error recognition rate of generalized obstacles. In this paper, pseudo-obstacles, obstacles with a certain height less than the maximum passing height of the vehicle, and obstacles with a height greater than the maximum passing height of the vehicle are defined as generalized obstacles. Pseudo-obstacles refer to non-height objects that appear to be "patches" on the imaging interface obtained by visual sensors and obstacles with a height less than the maximum passing height of the vehicle. VIDAR is a vision-IMU-based detection and ranging method. IMU is used to obtain the distance and pose of the camera movement, and through the inverse perspective transformation, it can calculate the height of the object in the image. The VIDAR-based obstacle detection method, the roadside unit-based obstacle detection method, YOLOv5 (You Only Look Once version 5), and the method proposed in this paper were applied to outdoor comparison experiments. The results show that the accuracy of the method is improved by 2.3%, 17.4%, and 1.8%, respectively, compared with the other four methods. Compared with the roadside unit obstacle detection method, the speed of obstacle detection is improved by 1.1%. The experimental results show that the method can expand the detection range of road vehicles based on the vehicle obstacle detection method and can quickly and effectively eliminate false obstacle information on the road.

18.
Environ Geochem Health ; 45(5): 1461-1474, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35499791

RESUMO

Currently, there is a lack of studies on microplastic pollution in mountain terrains and foothills areas in Northwest China and Central Asia. Here, we collected monthly dusts samples for one year and we studied the distribution, pollution levels, and sources of microplastics in atmospheric dust fall in the Ebinur Lake Basin in Northwest China. Results showed that the average content of dust microplastic on construction land was 28.61 ± 1.13 mg/kg, followed by farmland (20.25 ± 1.56 mg/kg), forest (19.52 ± 1.06 mg/kg), and deserts (8.08 ± 0.56 mg/kg). Regarding different land use types, atmospheric dust reduction dominated on farmland (58.64%), followed by urban area (26.65%), forest (9.76%), and desert (4.95%). Regarding the shape of microplastics, the order of occurrence in dust was film (46.85%) > fiber (35.15%) > foam(12.35%) > fragment (5.65%). In this study, four colors of microplastics were found in dust, and white accounted for the largest proportion (52.15%), followed by transparent (18.65%), black (19.45%), and green (9.75%). The main components of film microplastics in atmospheric dustfall in the Ebinur Lake Basin were PE and PP, and their sources were mainly plastic products in daily life, plastic industrial packaging materials from urban enterprises, broken plastic woven bags, and PET mostly from fabric fragment emissions. The abundance of microplastics in dust was correlated with atmospheric dust pH, EC, and total salt content. The contents of seven heavy metals (Cu, Ni, Cd, Pb, Cr, Mn, and Co) adsorbed by microplastics were also correlated with pH, EC, and total salt content. Our results represent a reference for microplastics pollution prevention in mountain terrains and foothills areas in northwest China and Central Asia.


Assuntos
Poeira , Metais Pesados , Poeira/análise , Microplásticos , Plásticos , Lagos/química , Metais Pesados/análise , China , Monitoramento Ambiental/métodos
19.
J Am Chem Soc ; 144(24): 10950-10957, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35617313

RESUMO

Superhydrophobic surfaces have suffered from being frequently penetrated by micro-/nano-droplets in high humidity, which severely deteriorates their water repellency. So far, various biological models for the high water repellency have been reported, which, however, focused mostly on the structural topology with less attention on the dimension character. Here, we revealed a common dimension character of the superhydrophobic fibrous structures of both Gerris legs and Argyroneta abdomens, featured as the conical topology and the micro-meter-scaled cylindrical diameter. In particular, it can be expressed by using a parameter of rp/l > 0.75 µm (r, l, and p are the radius, length, and apex spacing between fibers, respectively). Drawing inspiration, we developed a superhydrophobic micro-meter-scaled conical fiber array with a rather high rp/l value of 0.85 µm, which endows ultra-high water repellency even in high humidity. The micro-meter-scale asymmetric confined space between fibers enables generating a big difference in the Laplace pressure enough to propel the condensed dews away, while the tips help pin the air pocket underwater with a rather long life over 41 days. Taking advantage, we demonstrated a sustainable underwater aerobic reaction where oxygen was continuously supplied from the trapped air pocket by a gradually diffusing process. As a parameter describing both the dimension character and structural topology, the rp/l offers a new perspective for fabricating superhydrophobic fibrous materials with robust water repellency in high humidity, which inspires the innovative underwater devices with a robust anti-wetting performance.


Assuntos
Excipientes , Água , Umidade , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química , Molhabilidade
20.
J Exp Bot ; 73(3): 953-966, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34599807

RESUMO

A Citrus sinensis R2R3 MYB transcription factor (CsMYB96) has previously been shown to be strongly associated with the expression of many genes related to wax biosynthesis in the fruit. In this study, CsMYB96 was found to alleviate water loss by simultaneously regulating the expression of genes encoding plasma membrane intrinsic proteins (CsPIPs) and wax-related genes. Expression profiling indicated that CsPIP1;1 and CsPIP2;4 had high expression that was representative of other aquaporins, and they were down-regulated in the peel of post-harvest citrus fruit. CsPIP2;4 was further characterized as the predominant CsPIP, with high expression and high-water channel activity. Transient overexpression of CsPIP2;4 accelerated water loss in citrus fruit. In silico analysis further indicated that the expression of CsMYB96 had a significant negative correlation with that of CsPIPs. In vivo and in vitro experiments confirmed that CsMYB96 was able to directly repress the expression of CsPIPs. In addition, CsMYB96 was able to activate wax-related genes and promote wax biosynthesis for defense against water loss. Transient and stable overexpression of CsMYB96 reduced water loss from both citrus fruit and Arabidopsis.


Assuntos
Citrus sinensis , Proteínas de Plantas , Fatores de Transcrição , Perda Insensível de Água , Ceras , Aquaporinas/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo , Perda Insensível de Água/genética , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA