Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Circulation ; 149(2): 135-154, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084582

RESUMO

BACKGROUND: Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS: By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS: Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS: Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.


Assuntos
Diabetes Mellitus Tipo 2 , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Aorta/metabolismo , Células Endoteliais/metabolismo , Homeostase , Canais Iônicos/metabolismo
2.
Development ; 147(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31988189

RESUMO

Cellular proliferation is a basic process during organ development, tissue homeostasis and disease progression. Likewise, after injury typically multiple cell lineages respond to various cues and proliferate to initiate repair and/or remodeling of the injured tissue. Unravelling the specific role of proliferation of one cell type and its lineage in the context of the whole organism during tissue regeneration and/or disease progression would provide valuable information on these processes. Here, we report a new genetic system that allows cell proliferation to be inhibited in a tissue-specific manner. We generated Cre- or Dre-inducible p21-GFP (ip21-GFP) transgenic mice that enable experimentally induced permanent cell cycle arrest of specific cell lineages of interest, while genetically marking these cells. This system allows for the inhibition of pathogenic cell proliferation. We found that cardiac fibroblast proliferation inhibition significantly reduced scar formation, and promoted neovascularization and cardiomyocyte survival. Additionally, we found that inhibition of one type of cell proliferation (namely, hepatocytes) induces the lineage conversion of another type cells (i.e. ductal cells) during tissue regeneration. These results validate the use of ip21-GFP mice as a new genetic tool for cell lineage-specific inhibition of cell proliferation in vivo.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica , Técnicas Genéticas , Alelos , Animais , Linhagem da Célula , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Feminino , Fibroblastos/fisiologia , Proteínas de Fluorescência Verde , Coração/crescimento & desenvolvimento , Coração/fisiologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia
3.
Pathol Int ; 73(3): 109-119, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36285444

RESUMO

Laryngeal cancer (LC) is a rare and challenging clinical problem. Our aim was to investigate the mechanism of salt-like transcription factor 4 (SALL4) in LC. LC tissue and paracancerous tissue were collected. Relative mRNA or protein levels were measured by quantitative real-time polymerase chain reaction or Western blot. MTT, wound healing, and transwell assay were performed to evaluate cell proliferation, migration and invasion. The binding relationship between SALL4 and USP21 promoter was verified by dual-luciferase assay and ChIP. Co-IP and glutathione-S-transferase (GST)-pull down were performed to measure the protein interaction between USP21 and YY1. Additionally, YY1 ubiquitination level was analyzed. It was found that SALL4 mRNA and SALL4 protein levels were elevated in LC clinical tissues and various LC cells. Knockdown of SALL4 inhibited epithelial-mesenchymal transition (EMT) of LC cells. USP21 was transcriptionally activated by SALL4. Co-IP and GST-pull down confirmed USP21 interacted with YY1. USP21 protected YY1 from degradation through deubiquitination. Furthermore, overexpression of USP21 reversed the effect of knockdown of SALL4 on YY1 and EMT in LC cells. In general, SALL4 facilitated EMT of LC cells through modulating USP21/YY1 axis.


Assuntos
Neoplasias Laríngeas , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Laríngeas/genética , RNA Mensageiro , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Yin-Yang
4.
J Biomech Eng ; 145(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695754

RESUMO

Rigid interspinous process fixation (RIPF) has been recently discussed as an alternative to pedicle screw fixation (PSF) for reducing trauma in lumbar interbody fusion (LIF) surgery. This study aimed to investigate biomechanics of the lumbar spine with RIPF, and also to compare biomechanical differences between two postoperative stages (before and after bony fusion). Based on an intact finite-element model of lumbosacral spine, the models of single-level LIF with RIPF or conventional PSF were developed and were computed for biomechanical responses to the moments of four physiological motions using hybrid testing protocol. It was found that compared with PSF, range of motion (ROM), intradiscal pressure (IDP), and facet joint forces (FJF) at adjacent segments of the surgical level for RIPF were decreased by up to 8.4%, 2.3%, and 16.8%, respectively, but ROM and endplate stress at the surgical segment were increased by up to 285.3% and 174.3%, respectively. The results of comparison between lumbar spine with RIPF before and after bony fusion showed that ROM and endplate stress at the surgical segment were decreased by up to 62.6% and 40.4%, respectively, when achieved to bony fusion. These findings suggest that lumbar spine with RIPF as compared to PSF has potential to decrease the risk of adjacent segment degeneration but might have lower stability of surgical segment and an increased risk of cage subsidence; When achieved bony fusion, it might be helpful for the lumbar spine with RIPF in increasing stability of surgical segment and reducing failure of bone contact with cage.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Parafusos Pediculares/efeitos adversos , Amplitude de Movimento Articular/fisiologia , Vértebras Lombares/cirurgia , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos , Análise de Elementos Finitos
5.
Circulation ; 144(25): 2004-2020, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34797683

RESUMO

BACKGROUND: Cardiac fibrosis is a lethal outcome of excessive formation of myofibroblasts that are scar-forming cells accumulated after heart injury. It has been reported that cardiac endothelial cells (ECs) contribute to a substantial portion of myofibroblasts through endothelial to mesenchymal transition (EndoMT). Recent lineage tracing studies demonstrate that myofibroblasts are derived from the expansion of resident fibroblasts rather than from the transdifferentiation of ECs. However, it remains unknown whether ECs can transdifferentiate into myofibroblasts reversibly or EndoMT genes were just transiently activated in ECs during cardiac fibrosis. METHODS: By using the dual recombination technology based on Cre-loxP and Dre-rox, we generated a genetic lineage tracing system for tracking EndoMT in cardiac ECs. We used it to examine if there is transiently activated mesenchymal gene expression in ECs during cardiac fibrosis. Activation of the broadly used marker gene in myofibroblasts, αSMA (α-smooth muscle actin), and the transcription factor that induces epithelial to mesenchymal transition, Zeb1 (zinc finger E-box-binding homeobox 1), was examined. RESULTS: The genetic system enables continuous tracing of transcriptional activity of targeted genes in vivo. Our genetic fate mapping results revealed that a subset of cardiac ECs transiently expressed αSMA and Zeb1 during embryonic valve formation and transdifferentiated into mesenchymal cells through EndoMT. Nonetheless, they did not contribute to myofibroblasts, nor transiently expressed αSMA or Zeb1 after heart injury. Instead, expression of αSMA was activated in resident fibroblasts during cardiac fibrosis. CONCLUSIONS: Mesenchymal gene expression is activated in cardiac ECs through EndoMT in the developing heart, but ECs do not transdifferentiate into myofibroblasts, nor transiently express some known mesenchymal genes during homeostasis and fibrosis in the adult heart. Resident fibroblasts that are converted to myofibroblasts by activating mesenchymal gene expression are the major contributors to cardiac fibrosis.


Assuntos
Células Endoteliais/metabolismo , Fibrose/genética , Expressão Gênica/genética , Miofibroblastos/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos
6.
Bioorg Med Chem ; 65: 116782, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512484

RESUMO

Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos
7.
J Mater Sci Mater Med ; 33(6): 52, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657438

RESUMO

Under whole body vibration, how the cement augmentation affects the vibration characteristic of the osteoporotic fusion lumbar spine, complications, and fusion outcomes is unclear. A L1-L5 lumbar spine finite element model was developed to simulate a transforaminal lumbar interbody fusion (TLIF) model with bilateral pedicle screws at L4-L5 level, a polymethylmethacrylate (PMMA) cement-augmented TLIF model (TLIF-PMMA) and an osteoporotic TLIF model. A 40 N sinusoidal vertical load at 5 Hz and a 400 N preload were utilized to simulate a vertical vibration of the human body and the physiological compression caused by muscle contraction and the weight of human body. The results showed that PMMA cement augmentation may produce a stiffer pedicle screw/rod construct and decrease the risk of adjacent segment disease, subsidence, and rod failure under whole-body vibration(WBV). Cement augmentation might restore the disc height and segmental lordosis and decrease the risk of poor outcomes, but it might also increase the risk of cage failure and prolong the period of lumbar fusion under WBV. The findings may provide new insights for performing lumbar interbody fusion in patients affected by osteoporosis of the lumbar spine. Graphical abstract.


Assuntos
Vértebras Lombares , Fusão Vertebral , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares/cirurgia , Polimetil Metacrilato , Fusão Vertebral/métodos , Vibração/uso terapêutico
8.
Circ Res ; 125(3): 343-355, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31185811

RESUMO

RATIONALE: The developing heart is composed of cardiomyocytes and noncardiomyocytes since the early stage. It is generally believed that noncardiomyocytes including the cardiac progenitors contribute to new cardiomyocytes of the looping heart. However, it remains unclear what the cellular dynamics of nonmyocyte to cardiomyocyte conversion are and when the lineage segregation occurs during development. It also remains unknown whether nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. OBJECTIVE: We quantify the lineage conversion of noncardiomyocytes to cardiomyocytes in the embryonic and neonatal hearts and determine when the 2 cell lineages segregate during heart development. Moreover, we directly test if nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. METHODS AND RESULTS: We generated a dual genetic lineage tracing strategy in which cardiomyocytes and noncardiomyocytes of the developing heart could be simultaneously labeled by 2 orthogonal recombination systems. Genetic fate mapping showed that nonmyocyte to cardiomyocyte conversion peaks at E8.0 (embryonic day) to E8.5 and gradually declines at E9.5 and E10.5. Noncardiomyocytes do not generate any cardiomyocyte at and beyond E11.5 to E12.5. In the neonatal heart, noncardiomyocytes also do not contribute to any new cardiomyocyte in homeostasis or after injury. CONCLUSIONS: Noncardiomyocytes contribute to new cardiomyocytes of the developing heart at early embryonic stage before E11.5. The noncardiomyocyte and cardiomyocyte lineage segregation occurs between E10.5 and E11.5, which is maintained afterward even during neonatal heart regeneration.


Assuntos
Linhagem da Célula , Coração Fetal/citologia , Genes Reporter , Miócitos Cardíacos/citologia , Animais , Animais Recém-Nascidos , Rastreamento de Células , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Idade Gestacional , Coração/embriologia , Coração/fisiologia , Camundongos , Camundongos Transgênicos , Regeneração , Células-Tronco/classificação , Células-Tronco/citologia
9.
J Org Chem ; 86(12): 8236-8247, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34061530

RESUMO

An unprecedented and expeditious tandem bisannulation of polyfluoroalkylated tetralones with benzamidines to access various fluoroalkyl tetracyclic [1,3]-diazepines through multiple C-N bond formation and C(sp3)-F bond cleavage is reported. The process features high regio-/chemoselectivities, broad substrate scope, good functional group tolerance, procedural simplicity, mild reaction conditions, and scale-up synthesis. Mechanistic studies showed that the distinctive fluorine effect of polyfluoroalkyl tetralone plays a vital role for the aza-tetracycle construction.


Assuntos
Flúor
10.
Stem Cells ; 37(7): 958-972, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932271

RESUMO

Direct in vivo reprogramming of cardiac fibroblasts into myocytes is an attractive therapeutic intervention in resolving myogenic deterioration. Current transgene-dependent approaches can restore cardiac function, but dependence on retroviral delivery and persistent retention of transgenic sequences are significant therapeutic hurdles. Chemical reprogramming has been established as a legitimate method to generate functional cell types, including those of the cardiac lineage. Here, we have extended this approach to generate progenitor cells that can differentiate into endothelial cells and cardiomyocytes using a single inhibitor protocol. Depletion of terminally differentiated cells and enrichment for proliferative cells result in a second expandable progenitor population that can robustly give rise to myofibroblasts and smooth muscle. Deployment of a genome-wide knockout screen with clustered regularly interspaced short palindromic repeats-guide RNA library to identify novel mediators that regulate the reprogramming revealed the involvement of DNA methyltransferase 1-associated protein 1 (Dmap1). Loss of Dmap1 reduced promoter methylation, increased the expression of Nkx2-5, and enhanced the retention of self-renewal, although further differentiation is inhibited because of the sustained expression of Cdh1. Our results hence establish Dmap1 as a modulator of cardiac reprogramming and myocytic induction. Stem Cells 2019;37:958-972.


Assuntos
Benzamidas/farmacologia , Sistemas CRISPR-Cas , Reprogramação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Fibroblastos/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Proteínas Repressoras/genética , Células-Tronco/efeitos dos fármacos , Animais , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes/métodos , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/citologia , Músculo Liso/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
Circ Res ; 123(1): 86-99, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29764841

RESUMO

RATIONALE: Organs of the body require vascular networks to supply oxygen and nutrients and maintain physiological function. The blood vessels of different organs are structurally and functionally heterogeneous in nature. To more precisely dissect their distinct in vivo function in individual organs, without potential interference from off-site targets, it is necessary to genetically target them in an organ-specific manner. OBJECTIVE: The objective of this study was to generate a genetic system that targets vascular endothelial cells in an organ- or tissue-specific manner and to exemplify the potential application of intersectional genetics for precise, target-specific gene manipulation in vivo. METHODS AND RESULTS: We took advantage of 2 orthogonal recombination systems, Dre-rox and Cre-loxP, to create a genetic targeting system based on intersectional genetics. Using this approach, Cre activity was only detectable in cells that had expressed both Dre and Cre. Applying this new system, we generated a coronary endothelial cell-specific Cre (CoEC-Cre) and a brain endothelial cell-specific Cre (BEC-Cre). Through lineage tracing, gene knockout and overexpression experiments, we demonstrated that CoEC-Cre and BEC-Cre efficiently and specifically target blood vessels in the heart and brain, respectively. By deletion of vascular endothelial growth factor receptor 2 using BEC-Cre, we showed that vascular endothelial growth factor signaling regulates angiogenesis in the central nervous system and also controls the integrity of the blood-brain barrier. CONCLUSIONS: We provide 2 examples to illustrate the use of intersectional genetics for more precise gene targeting in vivo, namely manipulation of genes in blood vessels of the heart and brain. More broadly, this system provides a valuable strategy for tissue-specific gene manipulation that can be widely applied to other fields of biomedical research.


Assuntos
Vasos Sanguíneos , Encéfalo/irrigação sanguínea , Vasos Coronários , Marcação de Genes/métodos , Animais , Barreira Hematoencefálica , Hipóxia Celular , Células Endoteliais , Técnicas de Inativação de Genes , Hibridização In Situ/métodos , Camundongos , Neovascularização Fisiológica , Especificidade de Órgãos , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
12.
Proc Natl Acad Sci U S A ; 114(40): E8372-E8381, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916735

RESUMO

The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including ß-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both ß-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.


Assuntos
Fatores Biológicos/metabolismo , Pontos de Checagem do Ciclo Celular , Miócitos Cardíacos/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regeneração/fisiologia , Adulto , Animais , Diferenciação Celular , Dano ao DNA , Humanos , Masculino , Miócitos Cardíacos/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Ratos Sprague-Dawley
13.
J Mol Cell Cardiol ; 127: 204-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597148

RESUMO

Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proliferação de Células , DNA/biossíntese , Humanos , Processamento de Imagem Assistida por Computador , Fenótipo , Ploidias
14.
Circulation ; 135(1): 59-72, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27803039

RESUMO

BACKGROUND: Epicardial adipose tissue volume and coronary artery disease are strongly associated, even after accounting for overall body mass. Despite its pathophysiological significance, the origin and paracrine signaling pathways that regulate epicardial adipose tissue's formation and expansion are unclear. METHODS: We used a novel modified mRNA-based screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the adult heart. RESULTS: Using 2 independent lineage-tracing strategies in murine models, we show that cells originating from the Wt1+ mesothelial lineage, which includes epicardial cells, differentiate into epicardial adipose tissue after myocardial infarction. This differentiation process required Wt1 expression in this lineage and was stimulated by insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R inhibition within this lineage significantly reduced its adipogenic differentiation in the context of exogenous, IGF1-modified mRNA stimulation. Moreover, IGF1R inhibition significantly reduced Wt1 lineage cell differentiation into adipocytes after myocardial infarction. CONCLUSIONS: Our results establish IGF1R signaling as a key pathway that governs epicardial adipose tissue formation in the context of myocardial injury by redirecting the fate of Wt1+ lineage cells. Our study also demonstrates the power of modified mRNA -based paracrine factor library screening to dissect signaling pathways that govern progenitor cell activity in homeostasis and disease.


Assuntos
Adipócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/patologia , Pericárdio/citologia , Receptor IGF Tipo 1/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Comunicação Parácrina , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas WT1
15.
J Card Fail ; 24(7): 470-478, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29802896

RESUMO

BACKGROUND: Oxytocin (Oxt) and its receptor (Oxtr) gene system has been implicated in cardiomyogenesis and cardioprotection; however, effects of chronic activation of Oxtr are not known. We generated and investigated transgenic (TG) mice that overexpress Oxtr specifically in the heart. METHODS AND RESULTS: Cardiac-specific overexpression of Oxtr was obtained by having the α-major histocompatibility complex promoter drive the mouse Oxtr gene (α-Mhc-Oxtr). Left ventricular (LV) function and remodeling were assessed by magnetic resonance imaging and echocardiography. In α-Mhc-Oxtr TG mice, LV ejection fraction was severely compromised at 14 weeks of age compared with wild-type (WT) littermates (25 ± 6% vs 63 ± 3%; P < .001). LV end-diastolic volume was larger in the TG mice (103 ± 6 µL vs 67 ± 5 µL; P < .001). α-Mhc-Oxtr TG animals displayed cardiac fibrosis, atrial thrombus, and increased expression of pro-fibrogenic genes. Mortality of α-Mhc-Oxtr TG animals was 45% compared with 0% (P < .0001) of WT littermates by 20 weeks of age. Most cardiomyocytes of α-Mhc-Oxtr TG animals but not WT littermates (68.0 ± 12.1% vs 5.6 ± 2.4%; P = .008) were positive in staining for nuclear factor of activated T cells (NFAT). To study if thrombin inhibitor prevents thrombus formation, a cohort of 7-week-old α-Mhc-Oxtr TG mice were treated for 12 weeks with AZD0837, a potent thrombin inhibitor. Treatment with AZD0837 reduced thrombus formation (P < .05) and tended to attenuate fibrosis and increase survival. CONCLUSIONS: Cardiac-specific overexpression of Oxtr had negative consequences on LV function and survival in mice. The present findings necessitate further studies to investigate potential adverse effects of chronic Oxt administration. We provide a possible mechanism of Oxtr overexpression leading to heart failure by nuclear factor of activated T cell signaling. The recapitulation of human heart failure and the beneficial effects of the antithrombin inhibitor render the α-Mhc-Oxtr TG mice a promising tool in drug discovery for heart failure.


Assuntos
Cardiomiopatias/genética , Regulação da Expressão Gênica , Miocárdio/metabolismo , RNA/genética , Receptores de Ocitocina/genética , Animais , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Imagem Cinética por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Ocitocina/biossíntese
16.
Physiol Genomics ; 48(11): 771-784, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591124

RESUMO

Regenerative therapies hold great potential to change the treatment paradigm for cardiac diseases. Human cardiac progenitor cells can be used for drug discovery in this area and also provide a renewable source of cardiomyocytes. However, a better understanding of their characteristics is critical for interpreting data obtained from drug screening using these cells. In the present study, we performed global transcriptional analysis of two important sources of cardiac progenitors, i.e., patient epicardium-derived cells (EPDCs) and cardiac progenitor cells (CPCs) derived from human induced pluripotent stem cells. In addition, we also compared the gene expression profiles of these cells when they were cultured under normoxic and hypoxic conditions. We identified 3,289 mRNAs that were differentially expressed between EPDCs and CPCs. Gene ontology annotation and pathway enrichment analyses further revealed possible unique functions of these two cell populations. Notably, the impact of hypoxia vs normoxia on gene expression was modest and only a few genes (e.g., AK4, ALDOC, BNIP3P1, PGK1, and SLC2A1) were upregulated in EPDCs and CPCs after the cells were exposed to low oxygen for 24 h. Finally, we also performed a focused analysis of the gene expression patterns of a predefined set of 92 paracrine factors. We identified 30 of these genes as differentially expressed, and 29 were expressed at higher levels in EPDCs compared with CPCs. Taken together, the results of the present study advance our understanding of the transcriptional programs in EPDCs and CPCs and highlights important differences and similarities between these cell populations.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Pericárdio/citologia , Biomarcadores/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Análise por Conglomerados , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Anotação de Sequência Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxigênio/farmacologia , Comunicação Parácrina/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética
20.
J Cardiovasc Electrophysiol ; 25(5): 531-536, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24330029

RESUMO

BACKGROUND: The T-type Ca(2+) channel (I(CaT)) blocker mibefradil prevents AF-promoting remodeling occurring with atrial tachycardia, an action that has been attributed to I(CaT) inhibition. However, mibefradil has other effects, including ability to inhibit L-type Ca(2+) channels, Na(+) channels and cytochromes. Thus, the relationship between I(CaT) inhibition and remodeling protection in AF is still unknown. OBJECTIVE: To assess the effects of a novel highly selective Cav3 (I(CaT)) blocker, AZ9112, on atrial remodeling induced by 1-week atrial tachypacing (AT-P) in dogs. METHODS: Mongrel dogs were subjected to AT-P at 400 bpm for 7 days, with atrioventricular-node ablation and right-ventricular demand pacing (80 bpm) to control ventricular rate. Four groups of dogs were studied in investigator-blinded fashion: (1) a sham group, instrumented but without tachypacing or drug therapy (n = 5); (2) a placebo group, tachypaced but receiving placebo (n = 6); (3) a positive control tachypacing group receiving mibefradil (n = 6); and (4) a test drug group, subjected to tachypacing during oral treatment with AZ9112 (n = 8). RESULTS: One-week AT-P decreased atrial effective refractory period (ERP) at 6 of 8 sites and diminished rate-dependent atrial ERP abbreviation. Mibefradil eliminated AT-P-induced ERP-abbreviation at 4 of these 6 sites, while AZ9112 failed to affect ERP at any. Neither drug significantly affected AF vulnerability or AF duration. CONCLUSIONS: I(CaT) blockade with the highly selective compound AZ9112 failed to prevent rate-related atrial remodeling. Thus, prevention of atrial electrophysiological remodeling by mibefradil cannot be attributed exclusively to I(CaT) blockade. These results indicate that I(CaT) inhibition is not likely to be a useful approach for AF therapy.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Remodelamento Atrial/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Potenciais de Ação , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacocinética , Canais de Cálcio Tipo T/metabolismo , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Cães , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Mibefradil/farmacologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA