Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2301620120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307475

RESUMO

Directional radiation and scattering play an essential role in light manipulation for various applications in integrated nanophotonics, antenna and metasurface designs, quantum optics, etc. The most elemental system with this property is the class of directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole. A unified realization of all three dipole types and a mechanism to freely switch among them are previously unreported, yet highly desirable for developing compact and multifunctional directional sources. Here, we theoretically and experimentally demonstrate that the synergy of chirality and anisotropy can give rise to all three directional dipoles in one structure at the same frequency under linearly polarized plane wave excitations. This mechanism enables a simple helix particle to serve as a directional dipole dice (DDD), achieving selective manipulation of optical directionality via different "faces" of the particle. We employ three "faces" of the DDD to realize face-multiplexed routing of guided waves in three orthogonal directions with the directionality determined by spin, power flow, and reactive power, respectively. This construction of the complete directionality space can enable high-dimensional control of both near-field and far-field directionality with broad applications in photonic integrated circuits, quantum information processing, and subwavelength-resolution imaging.

2.
Opt Lett ; 49(8): 1915-1918, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621038

RESUMO

Pancharatnam-Berry (PB) metasurfaces can be applied to manipulate the phase and polarization of light within subwavelength thickness. The underlying mechanism is attributed to the geometric phase originating from the longitudinal spin of light. Here, we demonstrate, to the best of our knowledge, a new type of PB geometric phase derived from the intrinsic transverse spin of guided light. Using full-wave numerical simulations, we show that the rotation of a metallic nano-bar sitting on a metal substrate can induce a geometric phase covering 2π full range for the surface plasmons carrying an intrinsic transverse spin. Especially, the geometric phase is different for the surface plasmons propagating in opposite directions due to spin-momentum locking. We apply the geometric phase to design metasurfaces to manipulate the wavefront of surface plasmons to achieve steering and focusing. Our work provides a new mechanism for on-chip light manipulations with potential applications in designing ultra-compact optical devices for imaging and sensing.

3.
Phys Rev Lett ; 132(23): 233801, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905648

RESUMO

The Chern number has been widely used to describe the topological properties of periodic structures in momentum space. Here, we introduce a real-space spin Chern number for the optical near fields of finite-sized structures. This new spin Chern number is intrinsically quantized and equal to the structure's Euler characteristic. The relationship is robust against continuous deformation of the structure's geometry and is irrelevant to the specific material constituents or external excitation. Our Letter enriches topological physics by extending the Chern number to real space, opening exciting possibilities for exploring the real-space topological properties of light.

4.
Opt Express ; 31(18): 28929-28938, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710701

RESUMO

Exceptional points (EPs)-non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce-can give rise to many intriguing phenomena in optical systems. Here, we report a study of the optical forces on chiral particles in a non-Hermitian system at EPs. The EPs are achieved by employing the unidirectional coupling of the chiral particles sitting on a dielectric waveguide under the excitation of a linearly polarized plane wave. Using full-wave numerical simulations, we demonstrate that the structure can give rise to enhanced optical forces at the EPs. Higher order EPs in general can induce stronger optical forces. In addition, the optical forces exhibit an intriguing "skin effect": the force approaches the maximum for the chiral particle at one end of the lattice. The results contribute to the understanding of optical forces in non-Hermitian systems and can find applications in designing novel optical tweezers for on-chip manipulations of chiral particles.

5.
J Transl Med ; 20(1): 103, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197056

RESUMO

BACKGROUND: Pantothenate kinase (PANK) is the first and rate-controlling enzymatic step in the only pathway for cellular coenzyme A (CoA) biosynthesis. PANK-associated neurodegeneration (PKAN), formerly known as Hallervorden-Spatz disease, is a rare, life-threatening neurologic disorder that affects the CNS and arises from mutations in the human PANK2 gene. Pantazines, a class of small molecules containing the pantazine moiety, yield promising therapeutic effects in an animal model of brain CoA deficiency. A reliable technique to identify the neurometabolic effects of PANK dysfunction and to monitor therapeutic responses is needed. METHODS: We applied 1H magnetic resonance spectroscopy as a noninvasive technique to evaluate the therapeutic effects of the newly developed Pantazine BBP-671. RESULTS: 1H MRS reliably quantified changes in cerebral metabolites, including glutamate/glutamine, lactate, and N-acetyl aspartate in a neuronal Pank1 and Pank2 double-knockout (SynCre+ Pank1,2 dKO) mouse model of brain CoA deficiency. The neuronal SynCre+ Pank1,2 dKO mice had distinct decreases in Glx/tCr, NAA/tCr, and lactate/tCr ratios compared to the wildtype matched control mice that increased in response to BBP-671 treatment. CONCLUSIONS: BBP-671 treatment completely restored glutamate/glutamine levels in the brains of the mouse model, suggesting that these metabolites are promising clinically translatable biomarkers for future therapeutic trials.


Assuntos
Coenzima A , Neurodegeneração Associada a Pantotenato-Quinase , Animais , Encéfalo/patologia , Coenzima A/metabolismo , Modelos Animais de Doenças , Camundongos , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
6.
Opt Express ; 30(10): 16489-16498, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221490

RESUMO

Optical forces in the near fields have important applications in on-chip optical manipulations of small particles and molecules. Here, we report a study of optical force and torque on small particles induced by the optical polarization singularities of a gold cylinder. We show that the scattering of the cylinder generates both electric and magnetic C lines (i.e., lines of polarization singularities) in the near fields. The intrinsic spin density of the C lines can induce complex optical torque on a dielectric/magnetic particle, and the near-field evolutions of the C lines are accompanied by a gradient force on the particle. The force and torque manifest dramatic spatial variations, providing rich degrees of freedom for near-field optical manipulations. The study, for the first time to our knowledge, uncovers the effect of optical polarization singularities on light-induced force and torque on small particles. The results contribute to the understanding of chiral light-matter interactions and can find applications in on-chip optical manipulations and optical sensing.

7.
Opt Express ; 30(23): 42495-42503, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366702

RESUMO

Optical systems at non-Hermitian exceptional points (EPs) have intriguing properties that promise novel applications in light manipulations. Here, we realize an arbitrary order exceptional surface (ES), i.e., a surface of arbitrary order EPs, in chiral particles that couple with each other via the photonic spin-orbit interaction mediated by a dielectric waveguide. The chirality of the particles enables selective excitation of the chiral dipole modes by linearly polarized light. The unidirectional coupling of the chiral dipole modes gives rise to the ES in the parameter space defined by the material loss and coupling distance of the particles. We apply the system to realize a light funnel that can convert free-space plane waves to guided waves and funnel the incident light energy into a ring resonator. The results can find applications in designing optical switches, on-chip conversion of guided waves, and harvest of light energy.

8.
Opt Express ; 30(15): 27993-28002, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236956

RESUMO

Nonreciprocal optical devices have broad applications in light manipulations for communications and sensing. Non-magnetic mechanisms of optical nonreciprocity are highly desired for high-frequency on-chip applications. Here, we investigate the nonreciprocal properties of light propagation in a dielectric waveguide induced by a subwavelength spinning cylinder. We find that the chiral modes of the cylinder can give rise to unidirectional coupling with the waveguide via the transverse spin-orbit interaction, leading to different transmissions for guided wave propagating in opposite directions and thus optical isolation. We reveal the dependence of the nonreciprocal properties on various system parameters including mode order, spinning speed, coupling distance, and various losses. The results show that higher-order chiral modes and larger spinning speed generally give rise to stronger nonreciprocity, and there exists an optimal cylinder-waveguide coupling distance where the optical isolation reaches the maximum. The properties are sensitive to the material loss of the cylinder but show robustness against surface-roughness-induced loss in the waveguide. Our work contributes to the understanding of nonreciprocity in subwavelength moving structures and can find applications in integrated photonic circuits, topological photonics, and novel metasurfaces.

9.
Inorg Chem ; 61(18): 7017-7025, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35467857

RESUMO

The crystallization in glasses is a paradoxical phenomenon and scarcely investigated. This work explores the non-isothermal crystallization of a multicomponent alumino-borosilicate glass via in situ high-energy synchrotron X-ray diffraction, atomic pair distribution function, and Raman spectroscopy. Results depict the crystallization sequence as Ca3Al2O6 and CaSiO4 followed by LiAlO2 with the final compound formation of Ca3B2O6. These precipitations occur in a narrow temperature range and overlap, resulting in a single exothermic peak in the differential scanning calorimetry thermogram. The concurrent nucleation of Ca3Al2O6 and CaSiO4 is intermediated by their corresponding hydrates, which have dominantly short-range order. Moreover, the crystallization of LiAlO2 and Ca3B2O6 is strongly linked with the changes of structural units during the incubation stage in non-isothermal heating. These findings clarify the crystallization of multicomponent glass, which have been inferred from ex situ reports but never evidenced via in situ studies.

10.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628304

RESUMO

In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid-liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.


Assuntos
Doenças Neurodegenerativas , Ácidos Nucleicos , Humanos , Proteínas/metabolismo
11.
Opt Express ; 29(19): 29720-29729, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614711

RESUMO

Exceptional points (EPs), i.e., non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce, can be realized by tuning the gain/loss contrast of different modes in non-Hermitian systems or by engineering the asymmetric coupling of modes. Here we demonstrate a mechanism that can achieve EPs of arbitrary order by employing the non-reciprocal coupling of spinning cylinders sitting on a dielectric waveguide. The spinning motion breaks the time-reversal symmetry and removes the degeneracy of opposite chiral modes of the cylinders. Under the excitation of a linearly polarized plane wave, the chiral mode of one cylinder can unidirectionally couple to the same mode of the other cylinder via the spin-orbit interaction associated with the evanescent wave of the waveguide. The structure can give rise to arbitrary-order EPs that are robust against spin-flipping perturbations, in contrast to conventional systems relying on spin-selective excitations. In addition, we show that higher-order EPs in the proposed system are accompanied by enhanced optical isolation, which may find applications in designing novel optical isolators, nonreciprocal optical devices, and topological photonics.

12.
Opt Express ; 29(13): 20590-20600, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266145

RESUMO

Based on rigorous derivations using the electromagnetic energy-momentum tensor, we established a generic relationship between the longitudinal optical force (along the surface wave propagating direction) on a cylinder induced by surface waves and the energy flux of each surface mode supported on the interface between air and a lossless substrate possessing continuous translational symmetry along the longitudinal direction. The longitudinal optical force is completely attributed to the canonical momentum of light. Our theory is valid for generic types of surface waves and lays the theoretical foundation for the research and applications of optical manipulations by surface waves.

13.
Mol Cancer ; 18(1): 159, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31718679

RESUMO

BACKGROUND: Uveal melanoma (UM) is the most common primary intraocular tumor. Hepatic metastasis is the major and direct death-related reason in UM patients. Given that cancer stem-like cells (CSCs) are roots of metastasis, targeting CSCs may be a promising strategy to overcome hepatic metastasis in UM. Salinomycin, which has been identified as a selective inhibitor of CSCs in multiple types of cancer, may be an attractive agent against CSCs thereby restrain hepatic metastasis in UM. The objective of the study is to explore the antitumor activity of salinomycin against UM and clarify its underlying mechanism. METHODS: UM cells were treated with salinomycin, and its effects on cell proliferation, apoptosis, migration, invasion, CSCs population, and the related signal transduction pathways were determined. The in vivo antitumor activity of salinomycin was evaluated in the NOD/SCID UM xenograft model and intrasplenic transplantation liver metastasis mouse model. RESULTS: We found that salinomycin remarkably obviated growth and survival in UM cell lines and in a UM xenograft mouse model. Meanwhile, salinomycin significantly eliminated CSCs and efficiently hampered hepatic metastasis in UM liver metastasis mouse model. Mechanistically, Twist1 was fundamental for the salinomycin-enabled CSCs elimination and migration/invasion blockage in UM cells. CONCLUSIONS: Our findings suggest that targeting UM CSCs by salinomycin is a promising therapeutic strategy to hamper hepatic metastasis in UM. These results provide the first pre-clinical evidence for further testing of salinomycin for its antitumor efficacy in UM patients with hepatic metastasis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Melanoma/metabolismo , Melanoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piranos/farmacologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Piranos/química , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Opt Express ; 27(20): 28114-28122, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684569

RESUMO

Active optical systems can give rise to intriguing phenomena and applications that are not available in conventional passive systems. Structural rotation has been widely employed to achieve non-reciprocity or time-reversal symmetry breaking. Here, we examine the quasi-normal modes and scattering properties of a dielectric disk under rotation. In addition to the familiar phenomenon of Sagnac frequency shift, we observe the the hybridization of the clockwise (CW) and counter-clockwise CCW) chiral modes of the cavity controlled by the rotation. The rotation tends to suppress one chiral mode while amplifying the other, and it leads to the variation of the far field. The phenomenon can be understood as the result of a synthetic gauge field induced by the rotation of the cavity. We explicitly derived this gauge field and the resulting Sagnac frequency shift. The analytical results are corroborated by finite element simulations. Our results can be applied in the measurement of rotating devices by probing the far field.

15.
Opt Express ; 27(11): 16047-16057, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163791

RESUMO

We revisit the Green's function integral equation for modelling light scattering with discretization strategies as well as numerical integration recipes borrowed from finite element method. The finite element based Green's function integral equation is implemented by introducing auxiliary variables, which are used to discretize the Green's function integral equation. The merits of introducing finite element techniques into Green's function integral equation are apparent. Firstly, the finite element discretization provides a better geometric approximation of the scatterers, compared with that of the conventional discretization method using staircase approximation. Secondly, the accuracy of numerical integral inside one element associated with Green's function integral equations can be improved by using more quadrature points, where the singular terms confined inside each triangle can be approximated analytically. We then illustrate the advantages of our finite element based Green's function integral equation method via a few concrete examples in modelling light scattering by optically large and complex scatterers in 2-dimensional scenarios.

16.
Opt Express ; 26(21): 27694-27704, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469831

RESUMO

Upon illumination by a circularly polarized plane wave, a nanohelix converts part of the incoming optical spin angular momentum into optical orbital angular momentum. Here, by combining partial wave analysis with band structure and eigenmode calculations, we studied the optical torque and light extinction for a gold nanohelix. It is found that spin-orbital angular momentum conversion is a necessary condition for inducing recoil optical torque, but not for light extinction. In other words, a particle can have a large light extinction cross section but not a strong torque, or vice versa. Our calculation also shows that broad frequency band negative optical torque can also exist in a nanohelix, which possesses screw-axis symmetry.

17.
Environ Sci Technol ; 51(10): 5552-5562, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28434232

RESUMO

A large number of organic contaminants are commonly found in industrial and municipal wastewaters. For proper unit design to remove contaminant mixtures by adsorption, multicomponent adsorption equilibrium models are necessary. The present work examined the applicability of Ideal Adsorbed Solution Theory (IAST), a prevailing thermodynamic model, and its derivatives, i.e., Segregated IAST (SIAST) and Real Adsorbed Solution Theory (RAST), to bisolute adsorption of organic compounds onto a hyper-cross-linked polystyrene resin, MN200. Both IAST and SIAST were found to be less accurate in fitting the experimental bisolute adsorption isotherms than RAST. RAST incorporated with an empirical four-parameter equation developed in this work can fit the adsorbed phase activity coefficients, γi, better than RAST combined with the Wilson equation or the Nonrandom two-liquid (NRTL) model. Moreover, two polyparameter linear free energy relationships were developed for the adsorption of a number of solutes at low concentrations in the presence of a major contaminant (4-methylphenol or nitrobenzene). Results show that these relationships have a great potential in predicting γi of solutes when the adsorbed amounts are dominated by a major contaminant. To the best of our knowledge, this is the first study predicting γi for bisolute adsorption based on molecular descriptors. Overall, our findings have proved a major step forward to accurately modeling multisolute adsorption equilibrium.


Assuntos
Compostos Orgânicos/química , Águas Residuárias/química , Adsorção , Cresóis , Soluções
19.
Opt Express ; 24(3): 2235-41, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906799

RESUMO

Optical forces acting on nano-sized particles are typically too small to be useful for particle manipulation. We theoretically and numerically demonstrate a mechanism that can significantly enhance the optical force acting on a small particle through a special type of resonant particle-substrate coupling. The resonance arises from the singular behavior of the particle's effective polarizablity in the presence of a metal-dielectric-metal multilayer substrate. We show that this phenomenon is closely related to the existence of a flat-band plasmon mode supported by the multilayer substrate.

20.
Opt Express ; 24(13): 13992-8, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410562

RESUMO

A slab with relative permittivity ɛ = -1+iδ and permeability µ = ­1+iδ has a critical distance away from the slab where a small particle will either be cloaked or imaged depending on whether it is located inside or outside that critical distance. We find that the optical force acting on a small cylinder under plane wave illumination reaches a maximum value at this critical distance. Contrary to the usual observation that superlens systems should be highly loss-sensitive, this maximum optical force remains a constant when loss is changed within a certain range. For a fixed particle-slab distance, increasing loss can even amplify the optical force acting on the small cylinder, contrary to the usual belief that loss compromises the response of supenlens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA