RESUMO
Developmental and epileptic encephalopathies (DEE) are rare but devastating and largely intractable childhood epilepsies. Genetic variants in ARHGEF9, encoding a scaffolding protein important for the organization of the postsynaptic density of inhibitory synapses, are associated with DEE accompanied by complex neurological phenotypes. In a mouse model carrying a patient-derived ARHGEF9 variant associated with severe disease, we observed aggregation of postsynaptic proteins and loss of functional inhibitory synapses at the axon initial segment (AIS), altered axo-axonic synaptic inhibition, disrupted action potential generation, and complex seizure phenotypes consistent with clinical observations. These results illustrate diverse roles of ARHGEF9 that converge on regulation of the structure and function of the AIS, thus revealing a pathological mechanism for ARHGEF9-associated DEE. This unique example of a neuropathological condition associated with multiple AIS dysfunctions may inform strategies for treating neurodevelopmental diseases.
Assuntos
Fatores de Troca de Nucleotídeo Guanina Rho , Animais , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Camundongos , Humanos , Modelos Animais de Doenças , Segmento Inicial do Axônio/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Axônios/metabolismo , Axônios/patologia , Epilepsia/genética , Epilepsia/patologia , Masculino , Feminino , Potenciais de AçãoRESUMO
Effective gene therapy for gain-of-function or dominant-negative disease mutations may require eliminating expression of the mutant copy together with wild-type replacement. We evaluated such a knockdown-replace strategy in a mouse model of DNM1 disease, a debilitating and intractable neurodevelopmental epilepsy. To challenge the approach robustly, we expressed a patient-based variant in GABAergic neurons-which resulted in growth delay and lethal seizures evident by postnatal week three-and delivered to newborn pups an AAV9-based vector encoding a ubiquitously expressed, Dnm1-specific interfering RNA (RNAi) bivalently in tail-to-tail configuration with a neuron-specific, RNAi-resistant, codon-optimized Dnm1 cDNA. Pups receiving RNAi or cDNA alone fared no better than untreated pups, whereas the vast majority of mutants receiving modest doses survived with almost full growth recovery. Synaptic recordings of cortical neurons derived from treated pups revealed that significant alterations in transmission from inhibitory to excitatory neurons were rectified by bivalent vector application. To examine the mutant transcriptome and impact of treatment, we used RNA sequencing and functional annotation clustering. Mutants displayed abnormal expression of more than 1,000 genes in highly significant and relevant functional clusters, clusters that were abrogated by treatment. Together these results suggest knockdown-replace as a potentially effective strategy for treating DNM1 and related genetic neurodevelopmental disease.
Assuntos
Epilepsia , Terapia Genética , Animais , Humanos , Camundongos , Dependovirus/genética , Modelos Animais de Doenças , Dinamina I/genética , Dinamina I/metabolismo , Epilepsia/terapia , Epilepsia/genética , Neurônios GABAérgicos/metabolismo , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Mutação , Interferência de RNA , RNA Interferente Pequeno/genéticaRESUMO
PURPOSE: The optimal design for pharmacoepidemiologic drug-drug interactions (DDIs) studies is unclear. Using the association between concomitant use of sulfonylureas and warfarin and the risk of severe hypoglycemia as a case study, a DDI with little or no clinical impact, we tested whether the prevalent new-user design can be applied in the area. METHODS: Among all patients initiating sulfonylureas in the UK's Clinical Practice Research Datalink (1998-2020), we identified those adding-on warfarin while on a sulfonylurea. For each co-exposed patient, we defined a prescription-based exposure set including other sulfonylurea users not adding-on warfarin (comparators). Within each exposure set, we matched each co-exposed patient to five comparators on time-conditional propensity scores (TCPS) and followed them using an as-treated approach. Cox proportional hazards models estimated hazard ratios (HRs) and 95% confidence intervals (CIs) of severe hypoglycemia associated with concomitant use of sulfonylureas and warfarin compared to use of sulfonylureas alone. Sensitivity analyses addressed the impact of different potential sources of bias. RESULTS: The study cohort included 17 890 patients co-exposed to sulfonylureas and warfarin and 88 749 matched comparators. After TCPS matching, patient characteristics were well-balanced between groups. Compared to use of sulfonylureas alone, concomitant use of sulfonylureas and warfarin was not associated with the risk of severe hypoglycemia (HR, 1.04; 95% CI, 0.92-1.17). Sensitivity analyses were consistent with the primary analysis (HRs ranging from 1.01 to 1.15, all not statistically significant). CONCLUSIONS: Our study suggests that the prevalent new-user design could be used for the assessment of clinical effects of DDIs.
Assuntos
Anticoagulantes , Interações Medicamentosas , Hipoglicemia , Hipoglicemiantes , Compostos de Sulfonilureia , Varfarina , Humanos , Varfarina/efeitos adversos , Varfarina/administração & dosagem , Compostos de Sulfonilureia/efeitos adversos , Hipoglicemia/induzido quimicamente , Hipoglicemia/epidemiologia , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Anticoagulantes/efeitos adversos , Anticoagulantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/administração & dosagem , Farmacoepidemiologia/métodos , Reino Unido/epidemiologia , Projetos de Pesquisa , Bases de Dados Factuais , Idoso de 80 Anos ou mais , Modelos de Riscos Proporcionais , Pontuação de PropensãoRESUMO
China has over 100 million people living with type 2 diabetes mellitus (T2DM). Interventions framed around pre-existing personal beliefs in the supernatural may improve T2DM self-management, but such interventions are lacking in China. This pilot randomized controlled trial (RCT) assessed the feasibility of a full-scale RCT to evaluate the efficacy of a supernatural beliefs-based intervention on T2DM management self-efficacy in China. In 2019, 62 T2DM patients were enrolled at two hospitals in Suzhou, China. Participants were randomly assigned to view a 30-s control or intervention video at baseline. The control video showed general diabetes self-management information. The intervention video showed identical information, but also indicated that some diabetics with supernatural beliefs (chao ziran xinnian) have lower glycemic levels, because their beliefs enhance their confidence in diabetes self-management. Development of the intervention was guided by the theory of planned behavior and literature on spiritual framing health interventions. Baseline and follow-up measures after two weeks were assessed by interviewer administered surveys in-person and by telephone, respectively. Diabetes management self-efficacy was assessed with the diabetes management self-efficacy scale. Randomization of intervention allocation appeared to be successful. However, follow-up retention was low, especially for the intervention group (3% vs. 31%). A full-size efficacy RCT using the current study design is unlikely to succeed. T2DM patients shown the supernatural beliefs-based intervention had significantly higher loss to follow-up that was insurmountable. T2DM patients in Suzhou, China may not be receptive to brief, non-tailored supernatural beliefs-based interventions delivered to a general population in clinical settings.
Assuntos
Diabetes Mellitus Tipo 2 , Autoeficácia , Autogestão , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/psicologia , Projetos Piloto , Masculino , China , Feminino , Autogestão/métodos , Autogestão/psicologia , Pessoa de Meia-Idade , Idoso , AdultoRESUMO
BACKGROUND: Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics. This was validated in the platinum resistant versus sensitive parental cell lines, as well as platinum resistant versus sensitive human ovarian cancer patient samples. The prognostic significance of the different proteomics-identified marker proteins in prognosis prediction on survival as well as their correlative association and influence on immune cell infiltration was determined by public domain data bases. METHODS: We explored the proteomic differences between carboplatin-sensitive OVCAR5 cells (parental) and their carboplatin-resistant counterpart, OVCAR5 CBPR cells. qPCR and western blots were performed to validate differentially expressed proteins at the mRNA and protein levels, respectively. Association of the identified proteins with epithelial-mesenchymal transition (EMT) prompted the investigation of cell motility. Cellular bioenergetics and proliferation were studied to delineate any biological adaptations that facilitate cancer progression. Expression of differentially expressed proteins was assessed in ovarian tumors obtained from platinum-sensitive (n = 15) versus platinum-resistant patients (n = 10), as well as matching tumors from patients at initial diagnosis and following relapse (n = 4). Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) databases were used to determine the prognostic significance and influence of the different proteomics-identified proteins on immune cell infiltration in the tumor microenvironment (TME). RESULTS: Our proteomics study identified 2422 proteins in both cell lines. Of these, 18 proteins were upregulated and 14 were downregulated by ≥ twofold (p < 0.05) in OVCAR5 CBPR cells. Gene ontology enrichment analysis amongst upregulated proteins revealed an overrepresentation of biological processes consistent with EMT in the resistant cell line. Enhanced mRNA and/or protein expression of the identified EMT modulators including ITGA2, TGFBI, AKR1B1, ITGAV, ITGA1, GFPT2, FLNA and G6PD were confirmed in OVCAR5 CBPR cells compared to parental OVCAR5 cell line. Consistent with the altered EMT profile, the OVCAR5 CBPR cells demonstrated enhanced migration and reduced proliferation, glycolysis, and oxidative phosphorylation. The upregulation of G6PD, AKR1B1, ITGAV, and TGFß1 in OVCAR5 CBPR cells was also identified in the tumors of platinum-resistant compared to platinum-sensitive high grade serous ovarian cancer (HGSOC) patients. Matching tumors of relapsed versus newly diagnosed HGSOC patients also showed enhanced expression of AKR1B1, ITGAV, TGFß1 and G6PD protein in relapsed tumors. Among the identified proteins, significant enhanced expression of GFPT2, FLNA, TGFBI (CDGG1), ITGA2 predicted unfavorable prognosis in ovarian cancer patients. Further analysis suggested that the expression of TGFBI to correlate positively with the expression of identified and validated proteins such as GFPT2, FLNA, G6PD, ITGAV, ITGA1 and ITGA2; and with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells in the TME. CONCLUSIONS: Our research demonstrates proteomic-based discovery of novel EMT-related markers with an altered metabolic profile in platinum-resistant versus sensitive ovarian cancer cell lines. The study also confirms the expression of selected identified markers in the tumors of platinum-resistant versus sensitive, and in matching relapsed versus newly diagnosed HGSOC patients. The study provides insights into the metabolic adaptation of EMT-induced carboplatin resistant cells that confers on them reduced proliferation to provide effective migratory advantage; and the role of some of these identified proteins in ovarian cancer prognosis. These observations warrant further investigation of these novel target proteins in platinum-resistant patients.
Assuntos
Carboplatina , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Feminino , Humanos , Aldeído Redutase , Carboplatina/metabolismo , Carcinoma Epitelial do Ovário/genética , Linfócitos T CD8-Positivos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Platina , Proteômica , RNA Mensageiro , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologiaRESUMO
Effects of religion, spirituality and supernatural beliefs (RSS) upon health in mainland China remain poorly understood, despite strong RSS beliefs influencing Chinese society. We conducted a Chinese-English bilingual systematic review to summarize the state of RSS-health research in mainland China. Study quality was assessed using the Critical Appraisal Skills Program tool. We screened 1858 studies, 162 of which were included in the review. From 2000-2004 to 2015-2019, the number of RSS-health studies in China increased from five to 73. However, only 7% of studies were rated as higher quality. Cross-sectional and case-control studies represented the vast majority of study designs (94%) and religious affiliation was the only RSS measure for 58% of studies. Higher, moderate, and lower quality studies indicated that RSS has both beneficial and adverse health implications. RSS-health research in China has accelerated rapidly in the last 20 years, but fundamental gaps in knowledge remain. Longitudinal study designs and nuanced RSS measures are needed to advance understanding of RSS health effects in China.
Assuntos
Terapias Espirituais , Espiritualidade , Estudos Transversais , Humanos , Estudos Longitudinais , ReligiãoRESUMO
Mouse models have made innumerable contributions to understanding the genetic basis of neurological disease and pathogenic mechanisms and to therapy development. Here we consider the current state of mouse genetic models of Developmental and Epileptic Encephalopathy (DEE), representing a set of rare but devastating and largely intractable childhood epilepsies. By examining the range of mouse lines available in this rapidly moving field and by detailing both expected and unusual features in representative examples, we highlight lessons learned in an effort to maximize the full potential of this powerful resource for preclinical studies.
Assuntos
Modelos Animais de Doenças , Camundongos , Espasmos Infantis/genética , Espasmos Infantis/fisiopatologia , Animais , Síndromes Epilépticas/genética , Síndromes Epilépticas/fisiopatologia , Mutação com Ganho de Função , Humanos , Lactente , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Convulsões/genética , Convulsões/fisiopatologiaRESUMO
Janus Kinase 2 (JAK2) is a kind of intracellular non-receptor protein tyrosine kinase and has been certified as an important target for the treatment of myeloproliferative neoplasms and rheumatoid arthritis. However, the low selectivity and potential safety issues restrict the clinical applications of JAK2 inhibitors. Here we found that crizotinib showed good inhibitory activity against JAK2 by enzymatic assays (IC50â¯=â¯27â¯nM). Then we carried out structure-based drug design and synthesized a series of compounds with an aminopyridine scaffold. Finally, compound 12k and 12l were identified as the promising inhibitors of JAK2, which exhibited high inhibitory activity (IC50â¯=â¯6â¯nM and 3â¯nM, respectively) and selectivity for JAK2 over JAK1 and JAK3, and showed potent antiproliferative activities toward HEL human erythroleukemia cells. Moreover, 12k suppressed symptoms of the collagen-induced arthritis (CIA) model in rats.
Assuntos
Janus Quinase 2/antagonistas & inibidores , Pirimidinas/uso terapêutico , Animais , Humanos , Estrutura Molecular , Pirimidinas/farmacologia , Ratos , Relação Estrutura-AtividadeRESUMO
Circadian disruption has been linked to markers for poor health outcomes in humans and animal models. What is it about circadian disruption that is problematic? One hypothesis is that phase resetting of the circadian system, which occurs in response to changes in environmental timing cues, leads to internal desynchrony within the organism. Internal desynchrony is understood as acute changes in phase relationships between biological rhythms from different cell groups, tissues, or organs within the body. Do we have strong evidence for internal desynchrony associated with or caused by circadian clock resetting? Here we review the literature, highlighting several key studies from measures of gene expression in laboratory rodents. We conclude that current evidence offers strong support for the premise that some protocols for light-induced resetting are associated with internal desynchrony. It is important to continue research to test whether internal desynchrony is necessary and/or sufficient for negative health impact of circadian disruption.
Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Periodicidade , Fotoperíodo , Animais , Relógios Circadianos/genética , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Luz , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatologia , Núcleo Supraquiasmático/efeitos da radiaçãoRESUMO
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Assuntos
Imunoconjugados , Imunoconjugados/química , Imunoconjugados/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacosRESUMO
For centuries, Laggera pterodonta (LP), a Chinese herbal medicine, has been widely employed for treating respiratory infectious diseases; however, the mechanism underlying LP's effectiveness against the influenza A/Aichi/2/1968 virus (H3N2) remains elusive. This study aims to shed light on the mechanism by which LP combats influenza in H3N2-infected mice. First, we conducted quasi-targeted metabolomics analysis using liquid chromatography-mass spectrometry to identify LP components. Subsequently, network pharmacology, molecular docking, and simulation were conducted to screen candidate targets associated with AKT and NF-κB. In addition, we conducted a series of experiments including qPCR, hematoxylin-eosin staining, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay to provide evidence that LP treatment in H3N2-infected mice can reduce pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1ß, and MCP-1) while increasing T cells (CD3+, CD4+, and CD8+) and syndecan-1 and secretory IgA expression. This, in turn, aids in the prevention of excessive inflammation and the fortification of immunity, both of which are compromised by H3N2. Finally, we utilized a Western blot assay to confirm that LP indeed inhibits the AKT/NF-κB signaling cascade. Thus, the efficacy of LP serves as a cornerstone in establishing a theoretical foundation for influenza treatment.
RESUMO
GCaMP is a genetically encoded calcium indicator (GECI) widely used in neuroscience research. It measures intracellular Ca2+ level by fluorescence changes as it directly binds to Ca2+. In this process, the effect of this calcium buffer on the intracellular calcium signaling and cell physiology is often not taken into consideration. However, growing evidence from calcium imaging studies shows GCaMP expression under certain conditions can generate aberrant activity, such as seizures. In this study, we examined the effect of GCaMP6 expression in the dentate gyrus (DG) on epileptogenesis. We found that viral expression of GCaMP6s but not GCaMP6f in the DG induces tonic-clonic seizures several weeks after viral injection. Cell-type specific expression of GCaMP6s revealed the granule cells (GCs) as the key player in GCaMP6s-induced epilepsy. Finally, by using slice electrophysiology, we demonstrated that GCaMP6s expression increases neuronal excitability in the GCs. Together, this study highlights the ability of GCaMP6s in DG-associated epileptogenesis.
Assuntos
Cálcio , Neurônios , Humanos , Cálcio/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Sinalização do Cálcio , Cálcio da Dieta/metabolismo , Giro Denteado/metabolismoRESUMO
Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.
Assuntos
Microbioma Gastrointestinal , Resposta ao Choque Térmico , Penaeidae , Transcriptoma , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Penaeidae/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/imunologia , Microbioma Gastrointestinal/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Perfilação da Expressão Gênica , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Antioxidantes/metabolismoRESUMO
Multivessel coronary artery disease (CAD), defined as ≥50% stenosis in 2 or more epicardial arteries, is associated with a high burden of morbidity and mortality in acute coronary syndrome (ACS) patients. A salient challenge for managing this cohort is selecting the optimal revascularisation strategy, for which the use of coronary physiology has been increasingly recognised. Fractional flow reserve (FFR) is an invasive, pressure wire-based, physiological index measuring the functional significance of coronary lesions. Understanding this can help practitioners evaluate which lesions could induce myocardial ischaemia and, thus, decide which vessels require urgent revascularisation. Non-hyperaemic physiology-based indices, such as instantaneous wave-free ratio (iFR), provide valid alternatives to FFR. While FFR and iFR are recommended by international guidelines in stable CAD, there is ongoing discussion regarding the role of physiology in patients with ACS and multivessel disease (MVD); growing evidence supports FFR use in the latter. Compelling findings show FFR-guided complete percutaneous coronary intervention (PCI) can reduce adverse cardiovascular events, mortality, and repeat revascularisations in ACS and MVD patients compared to angiography-based PCI. However, FFR is limited in identifying non-flow-limiting vulnerable plaques, which can disadvantage high-risk patients. Here, integrating coronary physiology assessment with intracoronary imaging in decision-making can improve outcomes and quality of life. Further research into novel physiology-based tools in ACS and MVD is needed. This review aims to highlight the key evidence surrounding the role of FFR and other functional indices in guiding PCI strategy in ACS and MVD patients.
RESUMO
Fungal pathogens represent major problems for human health and agriculture. As eukaryotic organisms, fungi share some important features with mammalian cells. Therefore, current anti-fungal antibiotics often can not distinguish between fungi and mammalian cells, resulting in serious side effects in mammalian cells. Accordingly, there is strong impetus to develop antifungal alternatives that are both safe and effective. The E1 family of colicin are channel-forming bacteriocins produced by Escherichia coli, which are bactericidal only to E. coli and related species. To target the channel-forming domain of colicin to fungal cell membrane, we engineered a sexual mating pheromone of Candida albicans, α-factor pheromone to colicin Ia. A peptide was constructed consisting of an α mating pheromone of C. albicans fused to the channel-forming domain of colicin Ia to create a new fusion protein, pheromonicin-CA (PMC-CA). Indirect immunolabeling showed that the PMC-CA bound to fungal cells and inhibited growth in the laboratory and field. In the field, the protective activity of pheromonicin against rice blast disease was significantly greater, on a molar basis, than that of triazoles, tricyclazole or isoprothiolane. These results suggest that fusion peptides may be of value as fungicidal agents under agricultural conditions.
Assuntos
Colicinas/química , Fungicidas Industriais/química , Peptídeos/química , Candida albicans/química , Fator de Acasalamento , Engenharia de ProteínasRESUMO
INTRODUCTION: Thyroid hormone resistance (RTH) (mim # 188570) is a rare autosomal dominant genetic disorder characterized by reduced thyroid hormone response in target tissues. The clinical manifestations of RTH vary from no symptoms to symptoms of thyroid hormone deficiency to symptoms of thyroid hormone excess. PATIENT CONCERN AND CLINICAL FINDINGS: A 24-month-old girl presented with growth retardation, tachycardia, and persistently elevated thyroid hormones despite antithyroid treatment. DIAGNOSIS/INTERVENTION/OUTCOMES: The patient was diagnosed with RTH, after whole exon gene sequencing, found a de novo missense mutation (c.1375Tâ >â G,p.Phe459Val) in a novel locus of the thyroid hormone receptor beta gene. She had only mild growth retardation, so the decision was made to monitor her development without intervention. At her last follow-up at 5 years and 8 months of age, she continued to show growth retardation (-2 standard deviation below age-appropriate levels), in addition to delayed language development. Her comprehension ability and heart rate have remained normal. CONCLUSIONS: We report a mild case of RTH caused by a novel thyroid hormone receptor beta gene mutation. RTH should be considered in the differential diagnosis of abnormal serum thyroxine levels during neonatal screening.
Assuntos
Genes erbA , Síndrome da Resistência aos Hormônios Tireóideos , Pré-Escolar , Feminino , Humanos , População do Leste Asiático , Transtornos do Crescimento/genética , Mutação , Receptores beta dos Hormônios Tireóideos/genética , Síndrome da Resistência aos Hormônios Tireóideos/diagnóstico , Síndrome da Resistência aos Hormônios Tireóideos/genética , Hormônios TireóideosRESUMO
RATIONALE: CUL3 (OMIM: 603136) encodes cullin-3, a core component of ubiquitin E3 ligase. Existing medical research suggests that CUL3 mutations are closely related to neurodevelopmental disorder with or without autism or seizures (neurodevelopmental disorder with autism and seizures, OMIM: 619239). However, the number of published case reports of autism spectrum disorder due to CUL3 gene mutations is limited. PATIENT CONCERN: A four-year-old Chinese girl presented with generalized epilepsy, and then exhibited developmental regression, including loss of her speaking ability, eye contact aversion, and stereotyped behavior. DIAGNOSES: Whole-exome sequencing identified a nonsense mutation in the CUL3 gene, being c.2065Aâ >â T (p.Lys689*); no previous similar case was reported. The final diagnosis was autism, epilepsy, and motor growth retardation. INTERVENTION: In order to improve quality of life of the patient, she was provided with exercise rehabilitation training and autism behavioral guidance therapy for 3 months. OUTCOMES: The patient's exercise capacity had improved, and improvements in autism symptoms were not obvious. LESSONS: For clinicians, patients with developmental regression accompanied with concurrent epilepsy and autism spectrum disorder should be advised that relevant genetic tests are necessary to clarify the diagnosis.
Assuntos
Transtorno do Espectro Autista , Epilepsia , Humanos , Feminino , Pré-Escolar , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Códon sem Sentido , População do Leste Asiático , Qualidade de Vida , Epilepsia/genética , Epilepsia/complicações , Convulsões/complicações , Mutação , Proteínas Culina/genéticaRESUMO
BACKGROUND: Sandhoff disease (SD, Online Mendelian Inheritance in Man: 268800) is an autosomal recessive lysosomal storage disorder caused by variants of the ß-hexosaminidase B (HEXB) gene (Online Mendelian Inheritance in Man: 606873). The HEXB gene has been mapped to chromosome 5q13 and contains 14 exons. The symptoms of SD include progressive weakness, intellectual disability, visual and hearing impairment, exaggerated startle response, and seizures; the patients usually die before the age of 3 years.[1]. CASE SUMMARY: We present a case of SD caused by a homozygous frameshift mutation in the HEXB gene, c.118delG (p.A40fs*24). The male child, aged 2 years 7 months, showed movement retrogression with orbital hypertelorism at age 2 years, accompanied by seizures. Magnetic resonance imaging of the head showed cerebral atrophy and delayed myelination of the white matter of the brain. CONCLUSION: A novel homozygous frameshift c.118delG (p.A40fs*24) variant of HEXB has caused SD in the child. The major symptoms are intellectual disability, visual and hearing impairment, and seizures. Investigation will be continued in the future to comprehensively describe the genotype/phenotype and gain information on other associated features to understand the variable expressivity of this condition.
Assuntos
Deficiência Intelectual , Doença de Sandhoff , Humanos , Masculino , Cadeia beta da beta-Hexosaminidase/genética , beta-N-Acetil-Hexosaminidases/genética , Mutação da Fase de Leitura , Hexosaminidase B/genética , Mutação , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Convulsões , Pré-EscolarRESUMO
Objective: To develop a Thyroid Cancer Self-Perceived Discrimination Scale (TCSPDS) to identify patients at high risk for psychological problems and to test its reliability, validity and acceptability. Methods: Using classical test theory, a total of 176 thyroid cancer patients from November 2021 to October 2022 were recruited to develop the TCSPDS. Item analysis was used to improve the preliminary TCSPDS. Exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and structural equation model (SEM) were used to test the construct validity of the final TCSPDS. Pearson correlation coefficient was used to analyze the validity coefficient between TCSPDS and EORTC QLQ-C30 to test the criterion-related validity (CRV) of the final TCSPDS. The internal consistency coefficient (Cronbach's alpha coefficient), split half reliability (Spearman-Brown coefficient) and test-retest reliability were used to verify the reliability of the final TCSPDS. The questionnaire completion time and effective response rate were used to validate the acceptability of the final TCSPDS. Results: The TCSPDS consisted of 20 items and was divided into 3 subscales: 8 items for stigma, 6 items for self-deprecation, and 6 items for social avoidance. The TCSPDS had good validity (χ2/df=1.971, RMSEA=0.074, GFI=0.921, CFI= 0.930, IFI=0.932, TLI=0.901, Validity coefficient=0.767), reliability (Cronbach's alpha=0.867, Spearman-Brown coefficient=0.828, test-retest reliability coefficient=0.981) and acceptability [average completion time (15.01 ± 1.348 minutes) and an effective response rate of 95.14%]. Patients with higher TCSPDS scores reported a lower quality of life (P<0.05). Conclusion: The TCSPDS could be used for early identification and assessment of the level of self-perceived discrimination in patients with thyroid cancer, which may provide a scientific basis for health education, social support and psychosocial oncology services in the future, especially in Southwest China.
RESUMO
BACKGROUND: TBL1XR1, also known as IRA1 or TBLR1, encodes a protein that is localized in the nucleus and is expressed in most tissues. TBL1XR1 binds to histones H2B and H4 in vitro and functions in nuclear receptor-mediated transcription. TBL1XR1 is also involved in the regulation of the Wnt-ß-catenin signaling pathway. Mutations in the TBL1XR1 gene impair the Wnt-ß-catenin signaling pathway's ability to recruit Wnt-responsive element chromatin, affecting brain development. Mutations in this gene cause various clinical phenotypes, including Pierpont syndrome, autism spectrum disorder, speech and motor delays, mental retardation, facial dysmorphism, hypotonia, microcephaly, and hearing impairment. CASE SUMMARY: A 5-month-old female child was admitted with "episodic limb tremors for more than 1 month." At the time of admission, the child had recurrent episodes of limb tremors with motor retardation and a partially atypical and hypsarrhythmic video electroencephalogram. It was determined that a heterozygous mutation in the TBL1XR1 gene caused West syndrome and global developmental delay. Recurrent episodes persisted for 6 months following oral treatment with topiramate; the addition of oral treatment with vigabatrin did not show any significant improvement, and the disease continued to recur. The child continued to have recurrent episodes of limb tremors at follow-up until 1 year and 3 months of age. Additionally, she developed poor eye contact and a poor response to name-calling. CONCLUSION: We report the case of a child with West syndrome and a global developmental delay caused by a heterozygous mutation in the TBL1XR1 gene. This study adds to our understanding of the clinical phenotype of TBL1XR1 mutations and provides a realistic and reliable basis for clinicians.