RESUMO
The mechanisms and consequences of gene regulation by Hfq on trans-encoded small RNAs (sRNAs) have been well studied and documented. Recent employment of Genomic SELEX to search for Hfq-binding motifs has indicated that Hfq might frequently regulate gene expression controlled by cis-antisense RNAs. Here, we use the classic ColE1 plasmid antisense RNA-based regulation model (i.e., RNA I) to study the role of Hfq in controlling antisense regulatory functions. We show that Hfq exhibits a high binding affinity for RNA I and that binding limits RNase E cleavage, thereby stabilizing RNA I and reducing the plasmid copy number. Full-length RNA I displays a binding affinity for Hfq in the sub-micromolar range. In vivo overexpression of Hfq prolongs RNA I stability and reduces the ColE1 plasmid copy number, whereas deletion of hfq reduces RNA I stability and increases the plasmid copy number. RNA I predominantly binds to the proximal face of Hfq and exhibits competitive ability against a chromosome-borne proximal face-bound sRNA (DsrA) for Hfq binding. Through its strong promoter and high gene dosage features, plasmid-encoded antisense RNA I results in high RNA I expression, so it may antagonize the effects of trans-encoded RNAs in controlling target gene expression.
Assuntos
Variações do Número de Cópias de DNA , Endorribonucleases , RNA Antissenso , RNA Antissenso/genética , Plasmídeos/genética , Estabilidade de RNARESUMO
Adaptive mechanisms that facilitate intestinal colonization by the human microbiota, including Escherichia coli, may be better understood by analyzing the physiology and gene expression of bacteria in low-oxygen environments. We used high-throughput transcriptomics and proteomics to compare the expression profiles of E. coli grown under aerobic versus microaerobic conditions. Clustering of high-abundance transcripts under microaerobiosis highlighted genes controlling acid-stress adaptation (gadAXW, gadAB, hdeAB-yhiD and hdeD operons), cell adhesion/biofilm formation (pgaABCD and csgDEFG operons), electron transport (cydAB), oligopeptide transport (oppABCDF), and anaerobic respiration/fermentation (hyaABCDEF and hycABCDEFGHI operons). In contrast, downregulated genes were involved in iron transport (fhuABCD, feoABC and fepA-entD operons), iron-sulfur cluster assembly (iscRSUA and sufABCDSE operons), aerobic respiration (sdhDAB and sucABCDSE operons), and de novo nucleotide synthesis (nrdHIEF). Additionally, quantitative proteomics showed that the products (proteins) of these high- or low-abundance transcripts were expressed consistently. Our findings highlight interrelationships among energy production, carbon metabolism, and iron homeostasis. Moreover, we have identified and validated a subset of differentially expressed noncoding small RNAs (i.e., CsrC, RyhB, RprA and GcvB), and we discuss their regulatory functions during microaerobic growth. Collectively, we reveal key changes in gene expression at the transcriptional and post-transcriptional levels that sustain E. coli growth when oxygen levels are low.