Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Opt Express ; 32(3): 3194-3208, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297546

RESUMO

The Fabry-Perot (F-P) interference model was used to make a 6-layer metasurface with cross-polarization that can be changed by heat. The fundamental concept behind the metasurface is to utilize the selectivity of linearly polarized waves by a metal grating to achieve broadband and efficient polarized conversion (PC). It also uses the thermal conversion properties of vanadium dioxide (VO2) to control the amplitude of terahertz (THz) waves in a dynamic way. While achromatic metalenses have been extensively studied, altering the entire spatial incidence angle remains relatively uncommon. Enter modulated orbital angular momentum (MOAM), a promising approach for applications such as holographic encryption, optical communication, and imaging. However, achieving MOAM multidimensional multiplexing has proven to be a significant challenge. In response to this challenge, we have integrated the transmission phase into the metasurface design. This new idea makes it possible to make a full spatially achromatic metalenses with angular multiplexing and makes MOAM multidimensional multiplexing easier by letting you switch between frequency, angle, and MOAM modes. This pioneering approach unveils new prospects for enhancing the capacity, rate, and quality of information exchange in domains such as optical encryption, optical imaging, optical communication, and other related technological fields.

2.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271734

RESUMO

We proposed a bi-functional switchable metasurface based on vanadium dioxide (VO2) and photosensitive silicon. The metasurface functions as a transmissive polarization converter in its insulating state with asymmetric transmission characteristics. It attains a remarkable polarization conversion rate (PCR) surpassing 90% and a notable maximum asymmetric transmission (AT) parameter value of 0.73. This performance is observed within the frequency range from 4.31 to 7.86 THz. Dynamic regulation of PCR and AT can be achieved by adjusting the conductivity of photosensitive silicon. To illustrate the underlying factor behind the broadband polarization conversion, the surface current distribution is analyzed at 5.96 THz and 6.08 THz. On the other hand, when VO2is in the metallic state, the metasurface transforms into a bidirectional absorber with near-perfect absorption in both illumination directions. Under forward incidence of terahertz waves, the absorption rates for the transverse electric and transverse magnetic waves are 99.3% at 3.54 THz and 93% at 3.56 THz, respectively. The physical mechanism of near-perfect absorption is explained using impedance matching theory and the electric field distribution. This research expands the applications of transmissive polarization converters within multifunctional metasurfaces, providing new avenues for their practical implementation.

3.
J Opt Soc Am A Opt Image Sci Vis ; 41(4): 664-673, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568666

RESUMO

This study proposes two types of composite structures based on gold nano circular and nano square rings on a gold thin film for plasmonic refractive index sensing. The finite-difference time-domain method was used for simulation and analysis. The nano square ring composite structure showed superior performance, with five surface plasmon resonance modes, and a peak sensitivity and figure of merit in a liquid environment of 1600 nm/RIU and 86R I U -1, respectively. The sensing performances of localized surface plasmon resonance modes of both structures are superior to those of the propagating surface plasmon resonance modes. The proposed composite structures can provide a reference for refractive index sensing and have broad application prospects in bio-chemistry.

4.
Langmuir ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36628490

RESUMO

Facilitation of the photocarrier separation is a crucial strategy for developing highly efficient photocatalysts in eliminating environmental pollutants. Herein we have developed a new kind of Ag2MoO4/ZnWO4 (AMO/ZWO) composite photocatalysts with a Z-scheme mechanism by anchoring AMO nanoparticles onto ZWO nanorods. Multiple characterization methodologies and density functional theory (DFT) calculations were employed to study the performances of the AMO/ZWO heterojunctions as well as the underlying photocatalytic mechanism. Simulated-sunlight-driven photodegradation experiments for removing methylene blue (MB) demonstrates that the 8%AMO/ZWO heterojunction can photocatalytically remove 99.8% of MB within 60 min, and the reaction rate constant is obtained as 0.10199 min-1, which is enhanced by 6.8 (or 4.9) times when compared with that of pure ZWO (or AMO). On the base of the experimental results and DFT calculations, the enhanced photocatalytic mechanism of the AMO/ZWO heterojunctions was revealed to be the efficient separation of photocarriers via a Z-scheme transfer process. In addition, photodegradion of various organic pollutants over 8%AMO/ZWO was further compared and aimed at incorporating it into industrial application in pollutant removal.

5.
Nanotechnology ; 35(9)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37963403

RESUMO

A quadruple-function dynamically tunable terahertz absorber that uses a hybrid configuration of graphene and vanadium dioxide is proposed in this paper. The absorber achieves dynamic conversion of four functions in one structure: ultra-broadband, broadband, single-frequency narrowband and dual-frequency narrowband, by utilizing the electrical control properties of graphene and the phase-shifting properties of vanadium dioxide. Furthermore, the paper also reveals the physical mechanism of the proposed absorber through the electric field distribution and impedance matching theory. In addition, the influences of the Fermi energy level of graphene and the electrical conductivity of vanadium dioxide on the absorption spectra are investigated, demonstrating the structure's dynamic tunability. Due to the above features, the designed absorber is expected to have potential applications in terahertz imaging, modulation and filtering.

6.
Nanotechnology ; 35(1)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37757767

RESUMO

In this paper, we propose a dual-operating mode metasurface based on graphene and vanadium dioxide (VO2), which can switch operating modes by changing the temperature. At room temperature (25 °C), the metasurface can generates a polarization-insensitive electromagnetically induced transparency (EIT)-like effect that can be modulated by changing the Fermi energy level (EF) of graphene (through adding external voltage). In addition, the theoretical results derived from the two-particle model are in good agreement with the simulation results based on the finite element method. At high temperature (68 °C), the metasurface mode of operation can be changed to a dual-band absorber, providing absorption of 78.6% and 99.9% at 1.13 THz and 2.16 THz, respectively. Both absorption peaks can be dynamically tuned by changing theEFof graphene. The metasurface is also simultaneously polarization insensitive and has a wide incidence angle. The proposed metasurface can be used as a slow light device with a maximum group delay of 0.5 ps at room temperature and as a refractive index sensor with a maximum sensitivity of 0.5 THz/RIU at high temperature. The designed metasurface offers a new way for designing multifunctional terahertz devices, slow light devices, and refractive index sensors.

7.
Opt Express ; 30(19): 34787-34796, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242483

RESUMO

Achieving ultra-broadband and completely modulated absorption enhancement of monolayer graphene in near-infrared region is practically important to design graphene-based optoelectronic devices, however, which remains a challenge. In this work, by spectrally designing multiple magnetic plasmon resonance modes in metamaterials to be adjacent to each other, near-infrared light absorption in monolayer graphene is greatly improved to have an averaged absorption efficiency exceeding 50% in a very broad absorption bandwidth of about 800 nm. Moreover, by exerting an external bias voltage on graphene to change Fermi energy of graphene, the ultra-broadband absorption enhancement of monolayer graphene exhibits an excellent tunability, which has a nearly 100% modulation depth and an electrical switching property. This work is promising for applications in near-infrared photodetectors, amplitude modulators of electromagnetic waves, etc.

8.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857160

RESUMO

This study proposes a highly sensitive refractive-index (RI) sensor based on a TM0 waveguide mode resonance excited in an asymmetric metal-cladding dielectric waveguide structure, where the analyte serves as the guiding layer. By scanning the wavelength at fixed angles of incidence, the reflection spectra of the sensor were obtained. The results showed that the resonance wavelength redshifted dramatically with increases in the analyte RI, which indicates that this approach can be used to sense both the resonance wavelength and the analyte RI. Based on this approach, we investigated the sensing properties, including the sensitivity and figure of merit, at fixed incident angles of 60° and 45°, at which the sensitivity of the sensor reached 7724.9 nm/RIU (refractive index units) and 1339 nm/RIU, respectively. Compared with surface plasmon resonance sensors, which are based on a similar structure, the proposed sensor can accept a more flexible range of incident angles and a wider sensing range of analyte RI. This approach thus has tremendous potential for use in numerous sensing domains, such as biochemical and medical analyses.

9.
J Environ Manage ; 248: 109341, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31382192

RESUMO

In this work, we have assembled Bi2WO6 nanoparticles on the surface of honeycomb-like porous carbon skeleton (PCS) via a hydrothermal route to achieve a new type of PCS@Bi2WO6 hybrid composite photocatalysts. The PCS@Bi2WO6 hybrid structures are determined by SEM, TEM and XPS characterizations. UV-vis DRS investigation suggests an enhanced visible-light absorption of the PCS@Bi2WO6 composites. Transient photocurrent response, EIS and PL spectroscopy characterizations demonstrate that the composites exhibit an efficient separation of photoproduced electron/hole pairs. The photocatalytic performance of the composites were evaluated by using RhB as the model pollutant and simulated sunlight as the light source. It is revealed that the PCS@Bi2WO6 hybrid composites manifest much enhanced photocatalytic performance. The 5 wt%PCS@Bi2WO6 composite manifests the highest photocatalytic activity, which is ca. 2.1 times as large as that of bare Bi2WO6 nanoparticles. This can be mainly ascribed to two factors: (1) The photogenerated electron/hole pairs in Bi2WO6 are efficiently separated due to the electron transfer between Bi2WO6 and PCS; and (2) PCS induces enhanced visible-light absorption and the visible-light-excited electrons in PCS could also take part in the photocatalytic reactions.


Assuntos
Carbono , Nanopartículas , Catálise , Luz , Porosidade
10.
Appl Opt ; 53(26): 6091-5, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25321692

RESUMO

By using a prism of high refractive index, free-space cylindrical vector beams can be selectively converted into confined optical fields with large area, such as surface plasmon polaritons or waveguide modes, whose interference will produce optical features at the nanometer scale. Due to the polarization sensitivity of these modes, the macroscopic distribution of the confined field can be dynamically manipulated through an electronically driven liquid crystal. Based on these phenomena, a promising maskless interference nanolithography is proposed and experimentally demonstrated.

11.
Opt Lett ; 38(5): 736-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455282

RESUMO

Although surface-plasmon-coupled emission-based fluorescence microscopy proves high sensitivity for surface imaging, its donut shape point spread function (PSF) leads to low optical resolution and inefficient signal collection. In this Letter, we experimentally demonstrate the feasibility of solving this problem by the use of a liquid-crystal plate, which could convert the polarization state of surface-plasmon-coupled fluorescence from radial to linear. After being focused by the collection lens, an Airy disk-like PSF of small size can be realized. Experimental results reveal that both the lateral resolution and the signal-to-noise ratio can be enhanced simultaneously.

12.
Appl Opt ; 52(33): 8117-21, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513766

RESUMO

A dark-field imaging technique taking advantage of the active polymer slab waveguide (APSW) is experimentally investigated. The dye molecules (Rhodamine 6G, Rh6G) are doped in the polymer film for the launching of surface waves on the APSW, such as the surface plasmon polaritons on the Ag-polymer-air interface, evanescent fields at the polymer-air interface by the total internal reflection, or the guided modes. The localized surface waves will not radiate into the far-field space directly. When the specimens are placed on the surface of the APSW, these surface waves will be scattered to the far-field region, which forms the dark-field image of the specimen. Experimental results show that usage of APSW leads to high-contrast dark-field images with the conventional optical microscope system. The polymer film involved in the proposed dark-field microscopy brings about the merits of reduced roughness, good stability, bio-compatibility, and shorter wavelength of the illumination light source.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia de Fluorescência/instrumentação , Polímeros/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Nanomaterials (Basel) ; 10(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192053

RESUMO

In this paper, we demonstrate a tunable periodic hourglass-shaped graphene arrays absorber in the infrared (IR) and terahertz (THz) frequency bands. The effects of graphene geometric parameters, chemical potentials, periods, and incident angles on the pure absorption characteristics are studied by using the Finite Difference Time Domain (FDTD) method. In addition, this paper also analyzes the pure absorption characteristics of bilayer graphene arrays. The simulation results show that the maximum absorption reaches 38.2% for the monolayer graphene structure. Furthermore, comparing the bilayer graphene structure with the monolayer structure under the same conditions shows that the bilayer structure has a tunable dual-band selective absorption effect and has a higher maximum absorption of 41.7%. Moreover, it was found that there are dual-band tunable absorption peaks at 26 µm and 36.3 µm with the maximum absorption of 41.7% and 11%. The proposed structure is a convenient method which could be used in the design of graphene-based optoelectronic devices, biosensors, and environmental monitors.

14.
Micromachines (Basel) ; 10(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669287

RESUMO

Bi4Ti3O12 square plates were synthesized via a hydrothermal route, and their growth process was systematically investigated. Carbon quantum dots (CQDs) were prepared using glucose as the carbon source, which were then assembled on the surface of Bi4Ti3O12 square plates via a hydrothermal route with the aim of enhancing the photocatalytic performance. XRD (X-ray powder diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), UV-vis DRS (diffuse reflectance spectroscopy), XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectroscopy), PL (photoluminescence) spectroscopy, EIS (electrochemical impedance spectroscopy) and photocurrent spectroscopy were used to systematically characterize the as-prepared samples. It is demonstrated that the decoration of CQDs on Bi4Ti3O12 plates leads to an increased visible light absorption, slightly increased bandgap, increased photocurrent density, decreased charge-transfer resistance, and decreased PL intensity. Simulated sunlight and visible light were separately used as a light source to evaluate the photocatalytic activity of the samples toward the degradation of RhB in aqueous solution. Under both simulated sunlight and visible light irradiation, CQDs@Bi4Ti3O12 composites with an appropriate amount of CQDs exhibit obviously enhanced photocatalytic performance. However, the decoration of excessive CQDs gives rise to a decrease in the photocatalytic activity. The enhanced photocatalytic activity of CQDs-modified Bi4Ti3O12 can be attributed to the following reasons: (1) The electron transfer between Bi4Ti3O12 and CQDs promotes an efficient separation of photogenerated electron/hole pairs in Bi4Ti3O12; (2) the up-conversion photoluminescence emitted from CQDs could induce the generation of additional electron/hole pairs in Bi4Ti3O12; and (3) the photoexcited electrons in CQDs could participate in the photocatalytic reactions.

15.
Micromachines (Basel) ; 10(4)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999566

RESUMO

Using P25 as the titanium source and based on a hydrothermal route, we have synthesized CaTiO3 nanocuboids (NCs) with the width of 0.3-0.5 µm and length of 0.8-1.1 µm, and systematically investigated their growth process. Au nanoparticles (NPs) of 3-7 nm in size were assembled on the surface of CaTiO3 NCs via a photocatalytic reduction method to achieve excellent Au@CaTiO3 composite photocatalysts. Various techniques were used to characterize the as-prepared samples, including X-ray powder diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Rhodamine B (RhB) in aqueous solution was chosen as the model pollutant to assess the photocatalytic performance of the samples separately under simulated-sunlight, ultraviolet (UV) and visible-light irradiation. Under irradiation of all kinds of light sources, the Au@CaTiO3 composites, particularly the 4.3%Au@CaTiO3 composite, exhibit greatly enhanced photocatalytic performance when compared with bare CaTiO3 NCs. The main roles of Au NPs in the enhanced photocatalytic mechanism of the Au@CaTiO3 composites manifest in the following aspects: (1) Au NPs act as excellent electron sinks to capture the photoexcited electrons in CaTiO3, thus leading to an efficient separation of photoexcited electron/hole pairs in CaTiO3; (2) the electromagnetic field caused by localized surface plasmon resonance (LSPR) of Au NPs could facilitate the generation and separation of electron/hole pairs in CaTiO3; and (3) the LSPR-induced electrons in Au NPs could take part in the photocatalytic reactions.

16.
Environ Sci Pollut Res Int ; 26(28): 29020-29031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388948

RESUMO

To efficiently separate photoexcited electron/hole pairs is one of the key points for achieving excellent photocatalysts with high photocatalytic performances. To achieve this aim, here we have assembled CaTiO3 (CTO) nanoparticles onto BiOBr microplates, thus constructing novel Z-scheme CTO@BiOBr heterojunction composite photocatalysts. Observation by scanning/transmission electron microscopy confirms the good decoration of CTO nanoparticles (15-50 nm) on the surface of BiOBr microplates (diameter 0.7-2.2 µm, thickness 70-110 nm). Simulated sunlight was used as the light source, and rhodamine B (RhB) in aqueous solution was used as the model pollutant to assess the photodegradation activity of the samples. It is demonstrated that the CTO@BiOBr composites with an appropriate CTO content exhibit much enhanced photodegradation performances. In particular, the 10%CTO@BiOBr composite with a CTO mass fraction of 10%, which photocatalyzes 99.9% degradation of RhB at 30 min of photocatalysis, has a photocatalytic activity which is about 1.8 and 23.6 times larger than that of bare BiOBr microplates and CTO nanoparticles, respectively. This can be explained as the result of the Z-scheme electron transfer and efficient separation of photoexcited electron/hole pairs, as evidenced by photoluminescence, photocurrent response, and electrochemical impedance spectroscopy investigations.


Assuntos
Corantes/química , Modelos Químicos , Fotólise , Bismuto/química , Catálise , Nanopartículas , Rodaminas
17.
Nanoscale Res Lett ; 12(1): 608, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29181631

RESUMO

In this work, we integrated Ag3PO4 with Bi4Ti3O12 to form Bi4Ti3O12/Ag3PO4 heterojunction nanocomposites by an ion-exchange method. The as-prepared Bi4Ti3O12/Ag3PO4 composites were systematically characterized by means of XRD, SEM, TEM, BET, XPS, UV-vis DRS, EIS, PL spectroscopy, and photocurrent response. SEM, TEM, and XPS results demonstrate the creation of Bi4Ti3O12/Ag3PO4 heterojunction with obvious interfacial interaction between Bi4Ti3O12 and Ag3PO4. PL spectra, EIS spectra, and photocurrent responses reveal that the composites display an enhanced separation efficiency of photogenerated electron-hole pairs, which is due to the charge transfer between Bi4Ti3O12 and Ag3PO4. Rhodamine B (RhB) was chosen as the target organic pollutant to evaluate its degradation behavior over Bi4Ti3O12/Ag3PO4 composites under simulated sunlight irradiation. Compared to bare Bi4Ti3O12 and Ag3PO4 nanoparticles, the composites exhibit a significantly enhanced photocatalytic activity. The highest photocatalytic activity is observed for the 10% Bi4Ti3O12/Ag3PO4 composite with 10% Bi4Ti3O12 content, which is about 2.6 times higher than that of bare Ag3PO4. The photocatalytic mechanism involved was investigated and discussed in detail.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 26(5): 785-9, 2006 May.
Artigo em Zh | MEDLINE | ID: mdl-16883836

RESUMO

The integrated image spectrum and scattering light spectrum of optical emission at normal direction from rear-side of a metallic foil were measured, employing optical CCD camera and OMA optical multi-channel spectrometer. The integrated image spectrum shows that it presents a ring-shape, and in the near margin of the ring-shape a bright localized signal is shown, which is optical transition radiation (OTR) generated by hot electrons transport through solid targets. The scattering spectrum shows that it presents a series of nonperiodic sharp spikes between 300-500 nm, and the sharp spike is ascribed to the coherent transition radiation (CTR) generated by bunches of hot electron beams generated in v x B acceleration mechanism near 400 nm (2 omega). The intensity of transition radiation decreases with the increase of the target thickness.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 26(9): 1573-6, 2006 Sep.
Artigo em Zh | MEDLINE | ID: mdl-17112019

RESUMO

Using flat-field grating Spectrometer, the ions lines with wavelength between 5 and 60 nm were measured, which were produced by the interaction of circularly polarized 35 femtosecond ultraintense and ultrashort laser-pulse with 5 mm length xenon at the pressure 2 and 3 kPa respectively. The highest transition is the XeVIII: 4d10 5s(2 S1/2)--4d9 5s5p('P3/2) line at wavelength 17.0856 nm at 2 kPa and 3 kPa, the highest transition is 11.343 nm line of XeVII 4d10 5s2(1S0)--4d9 5s5f(3P1) transition. The xenon is ionized to XeVII, XeVIII and XeIX at both pressure.

20.
Nanoscale Res Lett ; 11(1): 190, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27067738

RESUMO

Bi2WO6 nanostructures were synthesized by a hydrothermal route, where the effect of various experimental parameters on the products was investigated. It is demonstrated that the sample morphology and size is highly dependent on the NaOH content (or pH value). At C NaOH = 0-0.0175 mol (pH range of 1-4), the prepared samples present flower-like hierarchical microspheres which are constructed from thin nanosheets via the self-assembly process. The size of the hierarchical microspheres exhibits a decreasing trend with increasing the NaOH content, from 7 µm at C NaOH = 0 mol to 1.5 µm at C NaOH = 0.0175 mol. At C NaOH = 0.03-0.0545 mol (pH: 5-9), the prepared samples exhibit irregular flake-like structures, and their size increases with the increase in NaOH content. At C NaOH = 0.055-0.05525 mol (pH: 10-11), the prepared samples are composed of uniform sphere-like particles with an average size of 85 nm. Compared to the NaOH content, the reaction temperature and time has a relatively small effect on the product morphology and size. The photocatalytic activity of the samples was evaluated by degrading rhodamine B (RhB) under irradiation of simulated sunlight. Among these samples, the samples composed of flower-like hierarchical microspheres have relatively high photocatalytic activity. In particular, the microspheres prepared at C NaOH = 0.01 mol exhibit the highest photocatalytic activity, and the degradation percentage reaches 99 % after 2 h of irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA