Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
1.
Immunity ; 56(2): 320-335.e9, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36693372

RESUMO

Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.


Assuntos
Imunidade Inata , Pneumonia , Humanos , Dopamina/metabolismo , Linfócitos , Pulmão/metabolismo , Pneumonia/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722058

RESUMO

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Citotoxicidade Imunológica , Ácidos Graxos , Metabolismo dos Lipídeos , Neoplasias/terapia , Linfócitos T Citotóxicos
4.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
5.
J Immunol ; 211(9): 1418-1425, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728417

RESUMO

Ever-growing evidence has revealed that group 2 innate lymphoid cells (ILC2s) exhibit pleiotropic effects in antihelminth immunity, allergy, tissue protection, and cancer. Currently, the role of ILC2s in cancer is highly controversial regarding the intricate tumor microenvironment (TME), and the tumor-promoting or antitumor immunological mechanisms of ILC2s remain largely unknown. In this study, we report that dopamine receptor 1 (DRD1) restrains ILC2 activity in the TME. DRD1 deficiency promotes ILC2 activation, which irritates eosinophil recruitment and cytotoxic CD8+ T cell expansion during ongoing malignancy. Consequently, DRD1-deficient mice exhibit delayed tumor growth and reduced tumor progression. Furthermore, fenoldopam, a selective DRD1 agonist, restrains the ILC2 response in the TME and aggravates tumor burden in mice. Taken together, our data elaborate that the DRD1 signal acts as an excitatory rheostat in regulating ILC2-dependent antitumor immunity.

6.
J Biol Chem ; 299(7): 104915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315790

RESUMO

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.


Assuntos
Morte Celular , Estresse do Retículo Endoplasmático , Ubiquitinas , eIF-2 Quinase , Animais , Camundongos , Apoptose , eIF-2 Quinase/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Resposta a Proteínas não Dobradas
7.
Small ; 20(13): e2308167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953455

RESUMO

Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.


Assuntos
Degeneração do Disco Intervertebral , Nanopartículas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Gasderminas , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Polifenóis/farmacologia
8.
Hepatology ; 78(1): 45-57, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632993

RESUMO

BACKGROUND AND AIM: Drug-induced liver injury occurs frequently and can be life threatening. Although drug-induced liver injury is mainly caused by the direct drug cytotoxicity, increasing evidence suggests that the interplay between hepatocytes and immune cells can define this pathogenic process. Here, we interrogate the role of the pattern recognition scavenger receptor A (SRA) for regulating hepatic inflammation and drug-induced liver injury. APPROACH AND RESULTS: Using acetaminophen (APAP) or halothane-induced liver injury models, we showed that SRA loss renders mice highly susceptible to drug hepatotoxicity, indicated by the increased mortality and liver pathology. Mechanistic studies revealed that APAP-induced liver injury exaggerated in the absence of SRA was associated with the decreased anti-inflammatory and prosurvival cytokine IL-10 concomitant with excessive hepatic inflammation. The similar correlation between SRA and IL-10 expression was also seen in human following APAP uptake. Bone marrow reconstitution and liposomal clodronate depletion studies established that the hepatoprotective activity of SRA mostly resized in the immune sentinel KCs. Furthermore, SRA-facilitated IL-10 production by KCs in response to injured hepatocytes mitigated activation of the Jun N-terminal kinase-mediated signaling pathway in hepatocytes. In addition, supplemental use of IL-10 with N -acetylcysteine, only approved treatment of APAP overdose, conferred mice improved protection from APAP-induced liver injury. CONCLUSION: We identify a novel hepatocyte-extrinsic pathway governed by the immune receptor SRA that maintains liver homeostasis upon drug insult. Giving that drug (ie, APAP) overdose is the leading cause of acute liver failure, targeting this hepatoprotective SRA-IL-10 axis may provide new opportunities to optimize the current management of drug-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Halotano , Hepatócitos , Receptores Depuradores , Receptores Depuradores/metabolismo , Animais , Camundongos , Acetaminofen/toxicidade , Halotano/toxicidade , Fígado/efeitos dos fármacos , Inflamação , Hepatócitos/metabolismo , Homeostase
9.
J Biochem Mol Toxicol ; 38(1): e23517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702107

RESUMO

Bacterial endotoxin lipopolysaccharide (LPS)-induced inflammatory response and ferroptosis play an important role in urinary tract infections. Tolterodine has been used as a urinary tract antispasmodic and anticholinergic agent. However, the effects of Tolterodine against LPS-induced insults in human bladder epithelial cells (hBECs) have not been reported before. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays to determine the cell viability, reactive oxygen species (ROS) and malondialdehyde level detection were used to determine the level of oxidative stress, enzyme-linked immunosorbent assay and Western blot analysis were used to detect the protein level. In the current study, we found that Tolterodine ameliorated LPS-induced production of ROS and lipid oxidation in hBECs. Interestingly, Tolterodine inhibited the production of interleukin 6, interleukin-1ß, and tumor necrosis factor α. Also, Tolterodine reduced the levels of Fe2+ and suppressed ferroptosis by reducing the levels of glutathione peroxidase 4, prostaglandin-endoperoxide synthase 2, and acyl-CoA synthetase long-chain family member 4 in LPS-challenged bladder epithelial cells. Mechanistically, it was shown that Tolterodine restored the nuclear factor E2-related factor 2 (Nrf2)/nuclear factor-κB signaling. Importantly, inhibition of Nrf2 with its specific inhibitor ML385 abolished the protective effects of Tolterodine in the inflammatory response and ferroptosis, suggesting that the effects of Tolterodine are mediated by Nrf2. Based on these findings, we conclude that Tolterodine might serve as a promising agent for the treatment of LPS-induced bladder inflammation.


Assuntos
Ferroptose , Lipopolissacarídeos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/toxicidade , Tartarato de Tolterodina , Fator 2 Relacionado a NF-E2/metabolismo , Bexiga Urinária/metabolismo , Células Epiteliais/metabolismo
10.
Bioorg Chem ; 150: 107562, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901282

RESUMO

Accumulating data support the key roles of the NLRP3 inflammasome, an essential component of the innate immune system, in human pathophysiology. As an emerging drug target and a potential biomarker for human diseases, small molecule inhibitors of the NLRP3 inflammasome have been actively pursued. Our recent studies identified a small molecule, MS-II-124, as a potent NLRP3 inhibitor and potential imaging probe. In this report, MS-II-124 was further characterized by an unbiased and comprehensive analysis through Eurofins BioMAP Diversity PLUS panel that contains 12 human primary cell-based systems. The analysis revealed promising activities of MS-II-124 on inflammation and immune functions, further supporting the roles of the NLRP3 inflammasome in these model systems. Further studies of MS-II-124 in mouse model of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and NLRP3 knockout mice demonstrated its target engagement, efficacy to suppress inflammatory cytokines and infiltration of immune cells in the lung tissues. In summary, the results support the therapeutic potential of MS-II-124 as a NLRP3 inhibitor and warrant future studies of this compound and its analogs to develop therapeutics for ALI/ARDS.

11.
Mol Ther ; 31(2): 569-584, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307990

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells that play an important role in diseases. MDSCs promote Th17 differentiation and aggravate systemic lupus erythematosus (SLE) progression by producing arginase-1 to metabolize arginine. However, the metabolic regulators remain unknown. Here, we report that MDSC derivative polyamines can promote Th17 differentiation via miR-542-5p in vitro. Th17 polarization was enhanced in response to polyamine treatment or upon miR-542-5p overexpression. The TGF-ß/SMAD3 pathway was shown to be involved in miR-542-5p-facilitated Th17 differentiation. Furthermore, miR-542-5p expression positively correlated with the levels of polyamine synthetases in peripheral blood mononuclear cells of patients with SLE as well as disease severity. In humanized SLE model mice, MDSC depletion decreased the levels of Th17 cells, accompanied by reduced expression of miR-542-5p and these polyamine synthetases. In addition, miR-542-5p expression positively correlated with the Th17 level and disease severity in both patients and humanized SLE mice. Together, our data reveal a novel molecular pathway by which MDSC-derived polyamine metabolism enhances Th17 differentiation and aggravates SLE.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Células Th17/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Progressão da Doença , Ligases/metabolismo
12.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886712

RESUMO

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Assuntos
Celulose , Dissulfetos , Molibdênio , Regeneração Nervosa , Células de Schwann , Alicerces Teciduais , Regeneração Nervosa/efeitos dos fármacos , Animais , Ratos , Alicerces Teciduais/química , Dissulfetos/química , Dissulfetos/farmacologia , Células de Schwann/efeitos dos fármacos , Molibdênio/química , Molibdênio/farmacologia , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados , Ratos Sprague-Dawley , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiologia , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Masculino , Traumatismos dos Nervos Periféricos , Estereoisomerismo
13.
J Nanobiotechnology ; 22(1): 333, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877492

RESUMO

In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.


Assuntos
Tecido Adiposo , Apoptose , Isquemia , MicroRNAs , Animais , Camundongos , Tecido Adiposo/citologia , MicroRNAs/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Estresse Oxidativo , Retalhos Cirúrgicos , Células Cultivadas , Camundongos Endogâmicos C57BL , Masculino , Sobrevivência Celular , Neovascularização Fisiológica , Técnicas de Cultura de Células em Três Dimensões/métodos
14.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Neuroinflammation ; 20(1): 6, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609266

RESUMO

Spinal cord injury (SCI) is a devastating injury that may result in permanent motor impairment. The active ingredients of medications are unable to reach the affected area due to the blood‒brain barrier. Elamipretide (SS-31) is a new and innovative aromatic cationic peptide. Because of its alternating aromatic and cationic groups, it freely crosses the blood‒brain barrier. It is also believed to decrease inflammation and protect against a variety of neurological illnesses. This study explored the therapeutic value of SS-31 in functional recovery after SCI and its possible underlying mechanism. A spinal cord contusion injury model as well as the Basso Mouse Scale, footprint assessment, and inclined plane test were employed to assess how well individuals could function following SCI. The area of glial scarring, the number of dendrites, and the number of synapses after SCI were confirmed by HE, Masson, MAP2, and Syn staining. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were employed to examine the expression levels of pyroptosis-, autophagy-, lysosomal membrane permeabilization (LMP)- and MAPK signalling-related proteins. The outcomes showed that SS-31 inhibited pyroptosis, enhanced autophagy and attenuated LMP in SCI. Mechanistically, we applied AAV vectors to upregulate Pla2g4A in vivo and found that SS-31 enhanced autophagy and attenuated pyroptosis and LMP by inhibiting phosphorylation of cPLA2. Ultimately, we applied asiatic acid (a p38-MAPK agonist) to test whether SS-31 regulated cPLA2 partially through the MAPK-P38 signalling pathway. Our group is the first to suggest that SS-31 promotes functional recovery partially by inhibiting cPLA2-mediated autophagy impairment and preventing LMP and pyroptosis after SCI, which may have potential clinical application value.


Assuntos
Piroptose , Traumatismos da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Lisossomos/metabolismo , Fosfolipases A2 Citosólicas/metabolismo
16.
Opt Express ; 31(13): 22144-22156, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381295

RESUMO

Aiming at the problems of narrow working bandwidth, low efficiency, and complex structure of existing terahertz chiral absorption, we propose a chiral metamirror composed of C-shaped metal split ring and L-shaped vanadium dioxide (VO2). This chiral metamirror is composed of three layers of structure, a gold substrate at the bottom, the first polyethylene cyclic olefin copolymer (Topas) dielectric layer and VO2-metal hybrid structure as the top. Our theoretical results led us to show that this chiral metamirror has a circular dichroism (CD) value greater than 0.9 at 5.70 to 8.55 THz and has a maximum value of 0.942 at f = 7.18 THz. In addition, by adjusting the conductivity of VO2, the CD value can be continuously adjustable from 0 to 0.942, which means that the proposed chiral metamirror supports the free switching of the CD response between the on and off states, and the CD modulation depth exceeds 0.99 in the range of 3 to 10 THz. Moreover, we discuss the influence of structural parameters and the change of incident angle on the performance of the metamirror. Finally, we believe that the proposed chiral metamirror has important reference value in the terahertz range for constructing chiral light detectors, CD metamirrors, switchable chiral absorbers and spin-related systems. This work will provide a new idea for improving the terahertz chiral metamirror operating bandwidth and promote the development of terahertz broadband tunable chiral optical devices.

17.
Opt Lett ; 48(19): 5153-5156, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773408

RESUMO

The deep application of chiral metasurfaces requires higher flexibility. Herein, we propose a multidimensional tunable chiral graphene metasurface, which uses coherent control to obtain more than 0.8 circular conversion dichroism (CCD) at 2.4 THz as a transmission structure. Its operating frequency can be changed in the 1.3-2.4 THz range, while the amplitude has almost perfect modulation depth in the range of 0-0.8. The mechanism of differential absorption was analyzed through numerical simulation. The device designed is easy to obtain reverse CCD, which is used for unit layout and proves its advantages in near-field imaging. Our work has broadened the path for the development of chiral metasurfaces towards higher degrees of freedom.

18.
Dig Dis ; 41(3): 447-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36366818

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cancer worldwide. miRNA has been linked to cancer processes. We want to figure out what the underlying mechanism and functions of miR-3682-3p are in HCC. METHODS: Thirty pairs of tumor tissues and adjacent tissues were obtained from HCC patients. mRNA and protein expressions were detected by quantitative real-time PCR and Western blot, respectively. The migration and invasion were measured using transwell or wound-healing assays. Dual luciferase and ChIP assays were utilized to detect gene interactions. RESULTS: miR-3682-3p was highly expressed in HCC tissues and cell lines. Silencing of miR-3682-3p inhibited cell migration and invasion, increased E-cadherin expression, and decreased N-cadherin, vimentin, and snail expressions, as well as the SOX2, OCT4, and Bmi1 expression, thereby restraining EMT and stemness of HCC in vitro. miR-3682-3p was positively activated by c-Myc and could directly target PTEN to activate PI3K/AKT/ß-catenin pathway. In addition, inhibition of PTEN weakened the anti-migration and anti-stemness effects of miR-3682-3p downregulation in HCC cells. CONCLUSION: miR-3682-3p promoted HCC migration and stemness through PTEN/PI3K/AKT/ß-catenin signaling, implying that miR-3682-3p might be a promising target for HCC clinical treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
19.
Acta Pharmacol Sin ; 44(3): 610-621, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36008706

RESUMO

Mitochondrial dynamics, including mitochondrial fission and fusion, are critical for maintaining mitochondrial functions. Evidence shows that TANK-binding kinase 1 (TBK1) regulates mitochondrial fusion and fission and then mitophagy. Since a previous study demonstrates a strong correlation between mitophagy and osteoarthritis (OA), we herein investigated the potential role of TBK1 in OA process and mitochondrial functions. We demonstrated a strong correlation between TBK1 and OA, evidenced by significantly downregulated expression of TBK1 in cartilage tissue samples of OA patients and in the chondrocytes of aged mice, as well as TNF-α-stimulated phosphorylation of TBK1 in primary mouse chondrocytes. TBK1 overexpression significantly attenuated TNF-α-induced apoptosis and abnormal mitochondrial function in primary mouse chondrocytes. Furthermore, TBK1 overexpression induced remodeling of mitochondrial morphology by directly phosphorylating dynamin-related protein 1 (DRP1) at Ser637, abolishing the fission of DRP1 and preventing its fragmentation function. Moreover, TBK1 recruitment and DRP1 phosphorylation at Ser637 was necessary for engulfing damaged mitochondria by autophagosomal membranes during mitophagy. Moreover, we demonstrated that APMK/ULK1 signaling contributed to TBK1 activation. In OA mouse models established by surgical destabilization of the medial meniscus, intraarticular injection of lentivirus-TBK1 significantly ameliorated cartilage degradation via regulation of autophagy and alleviation of cell apoptosis. In conclusion, our results suggest that the TBK1/DRP1 pathway is involved in OA and pharmacological targeting of the TBK1-DRP1 cascade provides prospective therapeutic benefits for the treatment of OA.


Assuntos
Dinâmica Mitocondrial , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Autofagia/fisiologia , Dinaminas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
20.
BMC Vet Res ; 19(1): 131, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612662

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a common cause of morbidity and mortality in captive wildlife species. However, CKD has been rarely documented in giant pandas. CASE PRESENTATION: The following report describes a case of an eight-year-old female giant panda showing clinical signs of epistaxis, bloody diarrhea, polyuria, azotemia and anemia. The animal died despite of supportive treatments. Necropsy was performed. Grossly, both kidneys were shrunken and scarred with pallor. Subcutis edema and petechia on the epicardium of the heart were observed. The tissue samples were made into paraffin sections and stained by H.E and special staining including Periodic Acid-Schiff (PAS), von Kossa, Masson's trichrome, Phosphotungstic acid-hematoxylin (PTAH), and Congo red. Histopathology examination revealed severe chronic tubulointerstitial nephritis with marked interstitial fibrosis, glomerulosclerosis, tubular atrophy and calcification in kidneys, and acute necrotizing hemorrhagic myocarditis with calcification in heart. Other lesions included intestinal hemorrhage, hepatic fatty degeneration and necrosis with hemosiderin, and splenic hemosiderin. CONCLUSIONS: In summary, chronic kidney disease was finally diagnosed based on the association of clinical, gross, and histopathological findings. Heart failure secondary to CKD is the leading cause of death in this giant panda. The potential cause of CKD in this animal is possibly due to long term and uncontrolled hypertension. Blood pressure monitoring is essential in establishing the diagnosis and management of hypertension in giant panda.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Ursidae , Animais , Feminino , Hemossiderina , Insuficiência Renal Crônica/veterinária , Rim , Hipertensão/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA