Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Mol Cell ; 84(1): 170-179, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181758

RESUMO

Apoptosis, the first regulated form of cell death discovered in mammalian cells, is executed by caspase-3/7, which are dormant in living cells but become activated by upstream caspase-8 or caspase-9 in responding to extracellular cytokines or intracellular stress signals, respectively. The same cell death-inducing cytokines also cause necroptosis when caspase-8 is inhibited, resulting in the activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates pseudokinase MLKL to trigger its oligomerization and membrane-disrupting activity. Caspase-1/4/5/11, known as inflammatory caspases, instead induce pyroptosis by cleaving gasdermin D, whose caspase-cleaved N terminus forms pores on the plasma membrane. The membrane protein NINJ1 amplifies the extent of membrane rupture initiated by gasdermin D. Additionally, disturbance of peroxidation of polyunsaturated fatty acid tails of membrane phospholipids triggers ferroptosis, an iron-dependent and caspases-independent necrotic death. This review will discuss how these regulated cell death pathways act individually and interconnectively in particular cell types to carry out specific physiological and pathological functions.


Assuntos
Caspases , Gasderminas , Animais , Caspase 8 , Morte Celular , Caspases/genética , Citocinas , Mamíferos
2.
Nature ; 631(8022): 777-782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987600

RESUMO

Most of the state-of-the-art thermoelectric materials are inorganic semiconductors. Owing to the directional covalent bonding, they usually show limited plasticity at room temperature1,2, for example, with a tensile strain of less than five per cent. Here we discover that single-crystalline Mg3Bi2 shows a room-temperature tensile strain of up to 100 per cent when the tension is applied along the (0001) plane (that is, the ab plane). Such a value is at least one order of magnitude higher than that of traditional thermoelectric materials and outperforms many metals that crystallize in a similar structure. Experimentally, slip bands and dislocations are identified in the deformed Mg3Bi2, indicating the gliding of dislocations as the microscopic mechanism of plastic deformation. Analysis of chemical bonding reveals multiple planes with low slipping barrier energy, suggesting the existence of several slip systems in Mg3Bi2. In addition, continuous dynamic bonding during the slipping process prevents the cleavage of the atomic plane, thus sustaining a large plastic deformation. Importantly, the tellurium-doped single-crystalline Mg3Bi2 shows a power factor of about 55 microwatts per centimetre per kelvin squared and a figure of merit of about 0.65 at room temperature along the ab plane, which outperforms the existing ductile thermoelectric materials3,4.

3.
Blood ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046786

RESUMO

Although tyrosine kinase inhibitor (TKI) therapy has markedly improved the survival of people with chronic-phase chronic myeloid leukemia (CML), 20-30% of people still experienced therapy failure. Data from 1,955 consecutive subjects with chronic-phase CML diagnosed by the European LeukemiaNet (ELN) recommendations from 1 center receiving initial TKI imatinib or a second-generation (2G-) TKI therapy were interrogated to develop a clinical prediction model for TKI therapy failure. This model was subsequently validated in 3,454 subjects from 76 other centers. Using the predictive clinical co-variates associated with TKI therapy failure, we developed a model that stratified subjects into low-, intermediate- and high-risk subgroups with significantly different cumulative incidences of therapy failure (p < 0.001). There was good discrimination and calibration in the external validation dataset, and the performance was consistent with that of the training dataset. Our model had the better prediction discrimination than the Sokal and ELTS scores did, with the greater time-dependent area under the receiver-operator characteristic curve (AUROC) values and a better ability to re-defined the risk of therapy failure. Our model could help physicians estimate the likelihood of initial imatinib or 2G-TKI therapy failure in people with chronic-phase CML.

4.
Genomics ; 116(3): 110838, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537807

RESUMO

After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.


Assuntos
Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Neovascularização Fisiológica , Osteogênese , Receptores Notch , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Hipóxia Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Angiogênese
5.
Nano Lett ; 24(30): 9178-9185, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39017609

RESUMO

Lithium (Li) dendritic growth and huge volume expansion seriously hamper Li-metal anode development. Herein, we design a lightweight 3D Li-ion-affinity host enabled by silver (Ag) nanoparticles fully decorating a porous melamine sponge (Ag@PMS) for dendrite-free and high-areal-capacity Li anodes. The compact Ag nanoparticles provide abundant preferred nucleation sites and give the host strong conductivity. Moreover, the high specific surface area and polar groups of the elastic, porous melamine sponge enhance the Li-ion diffusion kinetics, prompting homogeneity of Li deposition and stripping. As expected, the integrated 3D Ag@PMS-Li anode delivered a remarkable electrochemical performance, with a Coulombic efficiency (CE) of 97.14% after 450 cycles at 1 mA cm-2. The symmetric cell showed an ultralong lifespan of 3400 h at 1 mA cm-2 for 1 mAh cm-2. This study provides a facile and cost-effective strategy to design an advanced 3D framework for the preparation of a stable dendrite-free Li metal anode.

6.
J Am Chem Soc ; 146(1): 263-273, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109718

RESUMO

Dual-atom catalysts (DACs) with paired active sites can provide unique intrinsic properties for heterogeneous catalysis, but the synergy of the active centers remains to be elucidated. Here, we develop a high-performance DAC with Zn1Co1 species anchored on nitrogen-doped carbon (Zn1Co1/NC) as the dominant active site for the propane dehydrogenation (PDH) reaction. It exhibits several times higher turnover frequency (TOF) of C3H8 conversion and enhanced C3H6 selectivity compared to Zn1/NC or Co1/NC with only a single-atom site. Various experimental and theoretical studies suggest that the enhanced PDH performance stems from the promoted activation of the C-H bond of C3H8 triggered by the electronic interaction between Zn1 and Co1 colligated by N species. Moreover, the dynamic sinking of the Zn1 site and rising of the Co1 site, together with the steric effect of the dissociated H species at the bridged N during the PDH reaction, provides a feasible channel for C3H6 desorption through the more exposed Co1 site, thereby boosting the selectivity. This work provides a promising strategy for designing robust hetero DACs to simultaneously increase activity and selectivity in the PDH reaction.

7.
Anal Chem ; 96(33): 13679-13689, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110120

RESUMO

We aimed to develop an efficient detection platform that can identify a larger number of suspicious samples in a single test, saving time, manpower, and material costs, and providing vital support to the public health system in coping with the current challenging and dynamic bioterrorism threat landscape, particularly in regions of turmoil and conflict. We have successfully developed a high-throughput, multitarget fluorescent array detection platform by effectively combining integrating multiprobe amplification (MPA) with melting curve analysis. Specifically, we have established reliable laboratory testing methods for eight highly pathogenic bacteria, including Bacillus anthracis, Yersinia pestis, Brucella spp., Burkholderia pseudomallei, Francisella tularensis, Vibrio cholerae, Salmonella typhi, and Staphylococcus aureus. Our method achieves sensitive and specific simultaneous detection of eight target bacteria in one well by optimizing the reaction conditions of MPA. In the assessment of 192 simulated environmental samples, both positive and negative coincidence rates were 100.00%. Among 48 simulated clinical samples, the positive coincidence rate reached 97.73%, while maintaining a perfect negative coincidence rate of 100.00%. Moreover, the detection platform holds immense potential for attaining a more comprehensive bioterrorism screening, and its high cost-effectiveness enables the provision of diverse and adaptable diagnostic methods for public health quarantine in underdeveloped countries and regions.


Assuntos
Bioterrorismo , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Análise Custo-Benefício , Temperatura de Transição
8.
Anal Chem ; 96(29): 11809-11822, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975729

RESUMO

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.


Assuntos
Campos Eletromagnéticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Folhas de Planta/metabolismo , Folhas de Planta/química , Congelamento , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Plantas/metabolismo , Plantas/química , Flores/metabolismo , Flores/química
9.
Anal Chem ; 96(13): 5160-5169, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470972

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, µm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.


Assuntos
Diagnóstico por Imagem , Fígado , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fígado/metabolismo , Piridinas/análise
10.
Small ; 20(25): e2309331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213019

RESUMO

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

11.
Plant Biotechnol J ; 22(6): 1636-1648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308663

RESUMO

Branch angle (BA) is a critical morphological trait that significantly influences planting density, light interception and ultimately yield in plants. Despite its importance, the regulatory mechanism governing BA in rapeseed remains poorly understood. In this study, we generated 109 transcriptome data sets for 37 rapeseed accessions with divergent BA phenotypes. Relative to adaxial branch segments, abaxial segments accumulated higher levels of auxin and exhibited lower expression of six TCP1 homologues and one GA20ox3. A co-expression network analysis identified two modules highly correlated with BA. The modules contained homologues to known BA control genes, such as FUL, YUCCA6, TCP1 and SGR3. Notably, a homoeologous exchange (HE), occurring at the telomeres of A09, was prevalent in large BA accessions, while an A02-C02 HE was common in small BA accessions. In their corresponding regions, these HEs explained the formation of hub gene hotspots in the two modules. QTL-seq analysis confirmed that the presence of a large A07-C06 HE (~8.1 Mb) was also associated with a small BA phenotype, and BnaA07.WRKY40.b within it was predicted as candidate gene. Overexpressing BnaA07.WRKY40.b in rapeseed increased BA by up to 20°, while RNAi- and CRISPR-mediated mutants (BnaA07.WRKY40.b and BnaC06.WRKY40.b) exhibited decreased BA by up to 11.4°. BnaA07.WRKY40.b was exclusively localized to the nucleus and exhibited strong expression correlations with many genes related to gravitropism and plant architecture. Taken together, our study highlights the influence of HEs on rapeseed plant architecture and confirms the role of WRKY40 homologues as novel regulators of BA.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Transcriptoma/genética , Locos de Características Quantitativas/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenótipo , Genes de Plantas/genética
12.
New Phytol ; 243(5): 2021-2036, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014531

RESUMO

Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.


Assuntos
Reguladores de Crescimento de Plantas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Gentisatos/metabolismo , Gentisatos/química
13.
Opt Express ; 32(12): 21175-21190, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859478

RESUMO

The design of optical systems not only considers the imaging performance but also the manufacturing difficulty and feasibility of the system. In practice, errors in the manufacturing process of glass materials and deviations in glass material parameters introduced in complex environments can both lead to degradation in the imaging quality of optical systems. Optical systems that are sensitive to glass material errors face increased manufacturing difficulty and reduced stability. This paper, based on geometrical optics theory, establishes an evaluation function for refractive index error sensitivity and analyzes its relationship with optical parameters and glass materials. It proposes a design method to reduce the refractive index sensitivity of optical systems. Through simulation verification and analysis using examples, the validity of the desensitization design method is confirmed.

14.
Glob Chang Biol ; 30(1): e17111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273581

RESUMO

While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.


Assuntos
Rizosfera , Solo , Solo/química , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/metabolismo
15.
Langmuir ; 40(24): 12818-12827, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842118

RESUMO

The rebound dynamics of double droplets impacting an inclined superhydrophobic surface decorated with macro-ridges are investigated via lattice Boltzmann method (LBM) simulations. Four rebound regions are identified, that is, the no-coalescence-rebound (NCR), the partial-coalescence-rebound of the middle part bounces first (PCR-M), and the side part bounces first (PCR-S), as well as the complete-coalescence-rebound (CCR). The occurrence of the rebound regions strongly depends on the droplet arrangement, the center-to-center distance of the droplets, and the Weber number. Furthermore, the contact time is closely related to the rebound regions. The PCR-M region can significantly reduce the contact time because the energy dissipation in this region may decrease which can promote the rebound dynamic. Intriguingly, the contact time is also affected by the droplet arrangement; i.e., droplets arranged parallel to the ridge dramatically shorten the contact time since this arrangement increases the asymmetry of the liquid film. Therefore, for multidrop impact, the contact time can be effectively manipulated by changing the rebound region and the droplet arrangement. This work focuses on elucidating the wetting behaviors, rebound regions, and contact time of the multiple-droplet impacting an inclined superhydrophobic surface decorated with macro-ridges.

16.
Langmuir ; 40(32): 17049-17059, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39083646

RESUMO

Reducing the contact time of droplet impacts on surfaces is crucial for various applications including corrosion prevention and anti-icing. This study aims to explore a novel strategy that greatly reduces contact time using a superhydrophobic mesh surface with multiple sets of mutually perpendicular ridges while minimizing the influence of the impacting location. The effects of the impact Weber numbers and ridge spacing on the characteristics of the impact dynamics and contact time are studied experimentally. The experimental results reveal that, for the droplet impact on mesh surfaces, ridges can segment the liquid film into independently multiple-retracting liquid subunits. The retracted subunits provide the upward driving force, which may promote the splashing or pancake bouncing of droplets. At this point, the contact time has a negligible sensitivity for the impacting position and is significantly reduced by up to 68%. Furthermore, the time, dynamic pressure, and energy criteria for triggering splashing and pancake bouncing are proposed theoretically. This work provides an understanding of the mechanism and the design guidelines for effectively reducing the contact time of the impacting droplet on superhydrophobic surfaces.

17.
Langmuir ; 40(6): 3248-3259, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38298055

RESUMO

Coalescence-induced jumping has promised a substantial reduction in the droplet detachment size and consequently shows great potential for heat-transfer enhancement in dropwise condensation. In this work, using molecular dynamics simulations, the evolution dynamics of the liquid bridge and the jumping velocity during coalescence-induced nanodroplet jumping under a perpendicular electric field are studied for the first time to further promote jumping. It is found that using a constant electric field, the jumping performance at the small intensity is weakened owing to the continuously decreased interfacial tension. There is a critical intensity above which the electric field can considerably enhance the stretching effect with a stronger liquid-bridge impact and, hence, improve the jumping performance. For canceling the inhibition effect of the interfacial tension under the condition of the weak electric field, a square-pulsed electric field with a paused electrical effect at the expansion stage of the liquid bridge is proposed and presents an efficient nanodroplet jumping even using the weak electric field.

18.
Langmuir ; 40(20): 10759-10768, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712734

RESUMO

Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.

19.
Liver Int ; 44(3): 749-759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38131420

RESUMO

BACKGROUND & AIMS: aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B-related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction-associated steatotic liver disease (MASLD; formerly NAFLD)-related fibrosis diagnosis and establish a machine-learning (ML) model to improve the diagnostic performance. METHODS: A total of 946 biopsy-proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set (N = 703). The performance of ML models was evaluated in the external validation set (N = 125). RESULTS: The AUROCs of aMAP versus fibrosis-4 index (FIB-4) and aspartate aminotransferase-platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [P = 0.734], 0.735 [P = 0.001]) and (0.759 vs. 0.795 [P = 0.027], 0.709 [P = 0.049]). When using dual cut-off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB-4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM-plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM-plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM-plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). CONCLUSIONS: The aMAP score is capable of diagnosing MASLD-related fibrosis. The LSM-plus model could accurately identify MASLD-related cirrhosis and advanced fibrosis.


Assuntos
Técnicas de Imagem por Elasticidade , Fígado , Humanos , Fígado/patologia , Biópsia , Biomarcadores , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Fibrose , Aspartato Aminotransferases , Curva ROC
20.
Liver Int ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963299

RESUMO

BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a pivotal role in the outcome of MASH clinical trials. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses can provide an automated quantitative assessment of fibrosis features on a continuous scale called qFibrosis. In this exploratory study, we used this approach to gain insight into the effect of lifestyle intervention-induced fibrosis changes in MASH. METHODS: We examined unstained sections from paired liver biopsies (baseline and end-of-intervention) from MASH individuals who had received either routine lifestyle intervention (RLI) (n = 35) or strengthened lifestyle intervention (SLI) (n = 17). We quantified liver fibrosis with qFibrosis in the portal tract, periportal, transitional, pericentral, and central vein regions. RESULTS: About 20% (7/35) and 65% (11/17) of patients had fibrosis regression in the RLI and SLI groups, respectively. Liver fibrosis tended towards no change or regression after each lifestyle intervention, and this phenomenon was more prominent in the SLI group. SLI-induced liver fibrosis regression was concentrated in the periportal region. CONCLUSION: Using digital pathology, we could detect a more pronounced fibrosis regression with SLI, mainly in the periportal region. With changes in fibrosis area in the periportal region, we could differentiate RLI and SLI patients in the placebo group in the MASH clinical trial. Digital pathology provides new insight into lifestyle-induced fibrosis regression and placebo responses, which is not captured by conventional histological staging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA