Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Plant Cell Environ ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695280

RESUMO

There is often a trade-off effect between different agronomic traits due to gene pleiotropy, leading to a negative correlation between yield and resistance. Consequently, using gene-editing techniques to develop superior traits becomes challenging. Genetic resources that defy this constraint are scarce but hold great potential as targets for improvement through the utilisation of CRISPR. Transcription factors are critical in modulating numerous gene expressions across diverse biological processes. Here, we found that the trihelix transcription factor SlGT30 plays a role in drought resistance and tomato fruit development. We edited the SlGT30 gene with CRISPR/Cas9 technology and found that the knockout lines showed decreased stomata density in the leaves and large fruits. Subsequent examination revealed that cell ploidy was impacted in the leaves and fruits of SlGT30 knockout lines. SlGT30 knockout affected cell size through the endoreduplication pathway, manifested in decreased stomata density and reduced water loss. Consequently, this resulted in an enhancement of drought resistance. For the fruit, both cell size and cell number increased in the fruit pericarp of knockout lines, improving the fruit size and weight accordingly. Therefore, SlGT30 represents a promising candidate gene for gene editing in breeding practice.

2.
Opt Express ; 32(1): 325-338, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175059

RESUMO

The centroid estimation of the beacon spot is crucial to the pointing, acquisition, and tracking subsystem in inter-satellite optical wireless communication (IsOWC), especially for the received very weak beacon caused by a long link distance. In this work, we propose an accurate centroid positioning method to calculate the centroid of such a weak beacon with a low peak signal-to-noise ratio. The proposed method is based on the idea that uses the normalized amplitude of the gray gradient to enhance the weights near the center of the beacon spot. Both comparative numerical simulation and experimental verification are implemented, which demonstrate the effectiveness and feasibility of the proposed method. Compared to the gray centroid method, interpolation-based method, Hough transform method, and Gaussian fitting method, the proposed method has stronger robustness and higher accuracy, which could be helpful to applications in IsOWC as well as beacon-based pointing and tracking systems.

3.
Glob Chang Biol ; 30(4): e17281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619550

RESUMO

The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.


Assuntos
Ecossistema , Solo , Humanos , Disponibilidade Biológica , Mudança Climática , Fósforo
4.
Gastric Cancer ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954176

RESUMO

BACKGROUND: Limited data exist for global prevalence of claudin 18 isoform 2 (CLDN18.2) positivity and association of CLDN18.2 status with clinical and tumor characteristics in patients with locally advanced (LA) unresectable or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma. We report prevalence of CLDN18.2 positivity (phase 3; SPOTLIGHT, NCT03504397; GLOW, NCT03653507) and concordance of CLDN18.2 status between a subset of pair-matched tumor samples (phase 2, ILUSTRO, NCT03505320; phase 1, NCT03528629) from clinical studies of zolbetuximab. METHODS: Tumor samples from patients with LA unresectable or mG/GEJ adenocarcinoma were tested for CLDN18.2 status by immunohistochemistry. Human epidermal growth factor receptor 2 (HER2) expression was tested per central or local assessment. RESULTS: Across SPOTLIGHT and GLOW, the prevalence of CLDN18.2 positivity (≥ 75% of tumor cells demonstrating moderate-to-strong membranous CLDN18 staining) was 38.4%. Prevalence was similar in gastric versus GEJ adenocarcinoma samples and regardless of collection method (biopsy versus resection) or collection site (primary versus metastatic). CLDN18.2 positivity was most prevalent in patients with diffuse-type tumors. In ILUSTRO and the phase 1 study, concordance of CLDN18.2 positivity was 61.1% between archival (i.e., any time before treatment) and baseline (i.e., ≤ 3 months before first treatment) samples, and concordance of any CLDN18 staining (≥ 1% of tumor cells demonstrating moderate-to-strong membranous CLDN18 staining) was 88.9%. CONCLUSIONS: CLDN18.2 was a highly prevalent biomarker in patients with HER2-negative, LA unresectable or mG/GEJ adenocarcinoma. CLDN18.2 positivity remained relatively stable over time in many patients. Biomarker testing for CLDN18.2 should be considered in standard clinical practice in these patients.

5.
Mol Biol Rep ; 51(1): 428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499842

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) signaling pathway plays an important role in the progression of diabetic retinopathy (DR). The glycosylation modification process of many key functional proteins in DR patients is abnormal. However, the potential involvement of abnormal N-glycoproteins in DR progression remains unclear. METHODS: Glycoproteomic profiling of the vitreous humor was performed. The level of protein and N-glycoprotein was confirmed by Western blot and Lectin blot, respectively. The cell viability and migration efficiency were detected by CCK-8 and Transwell assay. Flow cytometry was conducted to analyze the level of cell apoptosis and reactive oxygen specie. Malondialdehyde, superoxide dismutase activity and VEGF content were detected by Enzyme linked immunosorbent assays. The interaction of metalloproteinase 1 (TIMP-1) with N-acetylglucosamine transferase V (GnT-V) was detected by GST pull-down. Hematoxylin and eosin staining and choroidal and retinal flat mount stained with fluorescein isothiocyanate-Dextran assay were used for functional research in vivo. RESULTS: We found that N-glycosylation was up-regulated in DR rats and high glucose (HG)-induced human retinal pigment epithelium cell line ARPE-19. HG-induced inhibited the viability of ARPE-19 cells and promoted cell apoptosis and oxidative stress (OS), but these effects were reversed with kifunensine treatment, GnT-V knockdown and TIMP-1 mutation. Additionally, GnT-V binds to TIMP-1 to promote N-glycosylation of TIMP-1. Over-expression of GnT-V inhibited the viability of ARPE-19 cells and promoted cell apoptosis, OS and VEGF release, which these effects were reversed with TIMP-1 mutation. Interestingly, over-expression of GnT-V promoted retinal microvascular endothelial cells (RMECs) angiogenesis but was revered with TIMP-1 mutation, which was terminally boosted by VEGF-A treatment. Finally, knockdown of GnT-V relieved DR progression. CONCLUSION: The findings indicate that GnT-V can promote RMECs angiogenesis and ARPE-19 cells injury through activation VEGF signaling pathway by increasing TIMP-1 N-glycosylation level, which provides a new theoretical basis for the prevention of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Humanos , Ratos , Movimento Celular , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Glicosilação , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34663698

RESUMO

The patterning and ossification of the mammalian skeleton requires the coordinated actions of both intrinsic bone morphogens and extrinsic neurovascular signals, which function in a temporal and spatial fashion to control mesenchymal progenitor cell (MPC) fate. Here, we show the genetic inhibition of tropomyosin receptor kinase A (TrkA) sensory nerve innervation of the developing cranium results in premature calvarial suture closure, associated with a decrease in suture MPC proliferation and increased mineralization. In vitro, axons from peripheral afferent neurons derived from dorsal root ganglions (DRGs) of wild-type mice induce MPC proliferation in a spatially restricted manner via a soluble factor when cocultured in microfluidic chambers. Comparative spatial transcriptomic analysis of the cranial sutures in vivo confirmed a positive association between sensory axons and proliferative MPCs. SpatialTime analysis across the developing suture revealed regional-specific alterations in bone morphogenetic protein (BMP) and TGF-ß signaling pathway transcripts in response to TrkA inhibition. RNA sequencing of DRG cell bodies, following direct, axonal coculture with MPCs, confirmed the alterations in BMP/TGF-ß signaling pathway transcripts. Among these, the BMP inhibitor follistatin-like 1 (FSTL1) replicated key features of the neural-to-bone influence, including mitogenic and anti-osteogenic effects via the inhibition of BMP/TGF-ß signaling. Taken together, our results demonstrate that sensory nerve-derived signals, including FSTL1, function to coordinate cranial bone patterning by regulating MPC proliferation and differentiation in the suture mesenchyme.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Suturas Cranianas/metabolismo , Sistema Nervoso/metabolismo , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo , Animais , Camundongos
7.
Odontology ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376795

RESUMO

Oral squamous cell carcinoma (OSCC) has become the most common HPV-related cancer with high invasion and metastasis. Exploring biomarkers for the screening and monitoring of OSCC, especially for the HPV-OSCC, would benefit patients' diagnosis and prognosis. This study evaluated the significance and mechanism of TMEM161B-AS1 and miR-651-5p in HPV-OSCC aiming to provide novel insight into the mechanism of HPV-OSCC development. Expression of TMEM161B-AS1 and miR-561-5p was analyzed in healthy individuals, HPV-infected non-OSCC patients, and HPV-OSCC patients using PCR. Their significance in HPV-OSCC occurrence and prognosis was evaluated by logistic regression, ROC, Kaplan-Meier, and Cox regression analysis. In OSCC cells, CCK8 and Transwell assays were employed for assessing cell growth and metastasis. The luciferase reporter assay and cell transfection were performed to evaluate the regulatory association between TMEM161B-AS1, miR-561-5p, and BDNF. Significant upregulation of TMEM161B-AS1 and downregulation of miR-561-5p were observed in oral HPV-infected patients. Both TMEM161B-AS1 and miR-651-5p served as risk factors for the occurrence of OSCC in oral HPV-infected patients and could distinguish HPV-OSCC patients from HPV-infected non-OSCC patients. Increased TMEM161B-AS1 and reduced miR-561-5p indicated severe development and adverse prognosis of HPV-OSCC patients. In OSCC cells, silencing TMEM161-AS1 suppressed cell proliferation and motility via negatively modulating miR-561-5p. miR-561-5p negatively regulated BDNF, which was considered the underlying mechanism of TMEM161B-AS1. Increasing TMEM161B-AS expression and decreasing miR-561-5p showed the occurrence of OSCC in HPV-infected patients and predicted malignant development and adverse prognosis. TMEME161B-AS1 served as a tumor promoter via regulating the miR-561-5p/BDNF axis.

8.
Plant J ; 111(1): 85-102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436390

RESUMO

Cucumber (Cucumis sativus) originated in tropical areas and is very sensitive to low temperatures. Cold acclimation is a universal strategy that improves plant resistance to cold stress. In this study, we report that heat shock induces cold acclimation in cucumber seedlings, via a process involving the heat-shock transcription factor HSFA1d. CsHSFA1d expression was improved by both heat shock and cold treatment. Moreover, CsHSFA1d transcripts accumulated more under cold treatment after a heat-shock pre-treatment than with either heat shock or cold treatment alone. After exposure to cold, cucumber lines overexpressing CsHSFA1d displayed stronger tolerance for cold stress than the wild type, whereas CsHSFA1d knockdown lines obtained by RNA interference were more sensitive to cold stress. Furthermore, both the overexpression of CsHSFA1d and heat-shock pre-treatment increased the endogenous jasmonic acid (JA) content in cucumber seedlings after cold treatment. Exogenous application of JA rescued the cold-sensitive phenotype of CsHSFA1d knockdown lines, underscoring that JA biosynthesis is key for CsHSFA1d-mediated cold tolerance. Higher JA content is likely to lead to the degradation of CsJAZ5, a repressor protein of the JA pathway. We also established that CsJAZ5 interacts with CsICE1. JA-induced degradation of CsJAZ5 would be expected to release CsICE1, which would then activate the ICE-CBF-COR pathway. After cold treatment, the relative expression levels of ICE-CBF-COR signaling pathway genes, such as CsICE1, CsCBF1, CsCBF2 and CsCOR1, in CsHSFA1d overexpression lines were significantly higher than in the wild type and knockdown lines. Taken together, our results help to reveal the mechanism underlying heat shock-induced cold acclimation in cucumber.


Assuntos
Cucumis sativus , Aclimatação/genética , Temperatura Baixa , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Plântula/genética , Transdução de Sinais
9.
Anal Chem ; 95(29): 11149-11156, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439818

RESUMO

Ion-selective electrode (ISE) potentiometry is reliable only if on-site calibration using a standard solution is performed before ion measurements. The complex device and operation required for calibration hinder the implementation of ISEs in decentralized sensing. Reported herein is a new type of ISE that is calibrated by a built-in component of the sensor without requiring any fluid handling processes. The indicator and reference electrodes are connected by a thin ionic conductor such as an aqueous phase containing the measuring ions in a capillary tube. This connection establishes a baseline electromotive force (EMF) that incorporates phase boundary potentials across multiple interfaces of the electrochemical cell and serves as a one-point calibration. Unlike conventional ISEs that rely on one EMF reading for each measurement, the proposed sensor utilizes a sample-induced EMF change relative to the baseline for each ion measurement. The variability in relative EMF is found to be <2.0 mV for multiple full potentiometric sensors consisting of plasticizer-based K+ ISEs and hydrogel-based Ag/AgCl reference electrodes. This value is significantly smaller than the variability of absolute EMF readouts in similar sensors without the self-calibration design. Moreover, when the ion-conducting calibration bridge has a low concentration of primary ions, low ion mobility, and/or a small contact area with the indicator and reference phases, it does not compromise the Nernstian response slope toward the analyte ions in the sample and therefore does not need to be removed for sample testing. The accuracy of the single-use self-calibrated K+ sensor in testing undiluted human blood samples is validated using a commercial blood gas analyzer as the reference method. Although this study focuses on disposable sensors consisting of tubes, the fluidics-free self-calibration strategy may be adapted to other sensor configurations such as planar sensors.

10.
Anal Chem ; 95(33): 12557-12564, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37567148

RESUMO

The self-monitoring of electrolytes using a small volume of capillary blood is needed for the management of many chronic diseases. Herein, we report an ionophore-based colorimetric sensor for electrolyte measurements in a few microliters of blood. The sensor is a pipet microtip preloaded with a segment of oil (plasticizer) containing a pH-sensitive chromoionophore, a cation exchanger, and an ionophore. The analyte is extracted from the sample into the oil via a mixing protocol controlled by a stepper motor. The oil with an optimized ratio of sensing chemicals shows an unprecedentedly large color response for electrolytes in a very narrow concentration range that is clinically relevant. This ultrahigh sensitivity is based on an exhaustive response mode with a novel mechanism for defining the lower and higher limits of detection. Compared to previous optodes and molecular probes for ions, the proposed platform is especially suitable for at-home blood electrolyte measurements because (1) the oil sensor is interrogated independent of the sample and therefore works for whole blood without requiring plasma separation; (2) the sensor does not need individual calibration as the consistency between liquid sensors is high compared to solid sensors, such as ion-selective electrodes and optodes; and (3) the sensing system consisting of a disposable oil sensor, a programmed stepper motor, and a smartphone is portable, cost-effective, and user-friendly. The accuracy and precision of Ca2+ sensors are validated in 51 blood samples with varying concentrations of total plasma Ca2+. Oil sensors with an ultrasensitive response can also be obtained for other ions, such as K+.


Assuntos
Colorimetria , Eletrodos Seletivos de Íons , Ionóforos/química , Cátions
11.
Breast Cancer Res Treat ; 200(2): 193-201, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204665

RESUMO

PURPOSE: Phyllodes tumor of the breast is a kind of rare neoplasm, which accounts for less than 1% of all breast tumors. Malignant phyllodes tumor (MPT) is the highest risk subtype of phyllodes tumor, and is characterized by the tendency of local recurrence and distant metastasis. The prediction of prognosis and the individual therapy for MPT is still challenging. It's urgent to develop a new reliable in vitro preclinical model in order to understand this disease better and to explore appropriate anticancer drugs for individual patients. METHODS: Two surgically resected MPT specimens were processed for organoid establishment. MPT organoids were subsequently subjected to H&E staining, immunohistochemical analysis and drug screening, respectively. RESULTS: We successfully established two organoid lines from different patients with MPT. The MPT organoids can well retain the histological features and capture the marker expression in original tumor tissues, including p63, vimentin, Bcl-2, CD34, c-Kit, and Ki-67, even after a long-term culture. The dose titration tests of eight typical chemotherapeutic drugs (paclitaxel, docetaxel, vincristine, doxorubicin, cisplatin, gemcitabine, cyclophosphamide, ifosfamide) on the two MPT organoid lines showed patient-specific drug responses and varying IC50 values. Of all the drugs, doxorubicin and gemcitabine showed the best anti-tumor effect on the two organoid lines. CONCLUSION: Organoids derived from MPT may be a novel preclinical model for testing personalized therapies for patients with MPT.


Assuntos
Antineoplásicos , Neoplasias da Mama , Tumor Filoide , Humanos , Feminino , Tumor Filoide/tratamento farmacológico , Tumor Filoide/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Organoides/patologia
12.
Appl Microbiol Biotechnol ; 107(2-3): 943-954, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36625912

RESUMO

Many fungi are able to produce extracellular polymeric substances (EPS) for environmental, food, and industrial applications. This study evaluated the extraction (in vivo) of EPS from Rhodotorula mucilaginosa, a typical yeast with abundant EPS. Three extracting methods were set, i.e., heating, addition of NaCl during heating, and cation exchange resin (CER). The abundance of extracted proteins and polysaccharides showed evident contrasts (elevated to ~ 600 and 1700 mg/L, respectively) after heating at 70 °C in water. Although the higher temperature will increase the extracted abundance of EPS, the leakage of DNA would be enhanced due to cell rupture. The addition of NaCl further promoted the efficiency of extraction, either for proteins (from ~ 550 to ~ 650 mg/L) or polysaccharides (from ~ 1700 to ~ 2010 mg/L). Moreover, the biochemical results showed that the extracted abundance of EPS via heating was dramatically higher than that via CER. Additionally, DNA leakage in the CER treatment (2.0 g/g DW) was significantly higher (up to > 6 mg/L) than that under heating at 70 °C (< 2 mg/L). Furthermore, the three-dimensional excitation-emission matrix spectra showed two characteristic peaks of emission/excitation wavelength at 280/300 and 280/350, suggesting the relative high diversity of organic matters in EPS after heating treatments. Finally, a fluctuation of polysaccharide abundance in EPS at 500-1500 mg/L Pb2+ level was elucidated by the extraction based on heating treatment. This study hence confirmed that the heating method might be recommended for extraction of EPS from fungi in vivo KEY POINTS: • 3D-EEM results indicated that heating could extract more EPS compared with CER. • Heating treatments showed lower DNA leakage from fungi than CER treatments. • Addition of NaCl promoted the detachment of EPS from fungal cells in vivo.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Sódio , Polissacarídeos , Proteínas , Fungos , Esgotos/química
13.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1107-1115, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706764

RESUMO

Surface defect identification plays a vital role in defective component rapid screening tasks in optics-related industries. However, the weakness and complexity of optical surface defects pose considerable challenges to their effective identification. To this end, a deep network based on multi-scale mixed kernels and structural re-parameterization is proposed to identify four manufacturing and two non-manufacturing optical surface defects. First, we design a multi-size mixed convolutional kernel with multiple receptive fields to extract rich shallow features for characterizing the defects with varying scales and irregular shapes. Then, we design an asymmetric mixed kernel integrating square, horizontal, vertical, and point convolutions to capture rotationally robust middle-and-deep features. Moreover, a structural re-parameterization strategy is introduced to equivalently convert the multi-branch architecture in the training phase into a deploy-friendly single-branch architecture in the inference phase, so that the model can obtain higher inference speed without losing any performance. Experiments on an optical surface defect dataset demonstrate that the proposed method is efficient and effective. It achieves a remarkable accuracy of 97.39% and an ultra-fast inference speed of 201.76 frames/second with only 5.23M parameters. Such a favorable accuracy-speed trade-off is capable of meeting the requirements of real-world optical surface defect identification applications.

14.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1237-1248, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706778

RESUMO

The detection of surface weak scratches is an intractable but vital task in optics-centered industries. However, the intrinsic characteristics of weak scratches, such as a narrow width, long span, and shallow depth, make it extremely difficult to effectively detect these scratches. In this paper, we tackle this issue from two perspectives. First, a multimodal microscopic imaging system is created by combining discrete multispectral illumination with linear polarization. Imaging experiments demonstrated that this system could highlight more scratch details, improve image clarity, and alleviate the image blur problem induced by wide spectrum scattered lights. Second, a scratch-oriented U-shaped deep encoder-decoder network equipped with optimized residual encoding modules, serial-parallel multiscale fusion modules, and triple-convolution decoding modules is proposed to segment the weak scratches from a raw image. The detection experiments demonstrate that our model can accurately segment the weak scratches on optical surfaces and achieve better detection performance using significantly fewer parameters compared to similar deep learning models. Meanwhile, experiments on the building crack dataset prove the excellent generalization capability.

15.
BMC Surg ; 23(1): 207, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480018

RESUMO

OBJECTIVE: To compare and analyze the clinical effects of bilateral natural pressure drainage and negative pressure drainage after posterior lumbar interbody fusion (PLIF) to provide a reference for selecting drainage methods after lumbar surgery. METHODS: A retrospective cohort study, 281 patients who underwent single-segment PLIF in our hospital from January 2017 to December 2020 and met the inclusion and exclusion criteria were included in the study, including 132 males and 149 females, aged 22-85 years, with an average of (53.62 ± 11.23) years. According to different postoperative incision drainage methods determined by the random number table method before surgery, they were divided into the natural pressure drainage group and negative pressure drainage group, both of which were bilateral drainage. The general observation indexes and perioperative-related indexes were recorded and analyzed. RESULTS: There were 143 cases in the natural pressure drainage group and 138 cases in the negative pressure drainage group. There was no significant difference in age, gender, body mass index, disease type, blood pressure on the day of surgery, preoperative albumin, hemoglobin, platelet, prothrombin time, and intraoperative bleeding between the two groups (P > 0.05). The albumin on the first postoperative day in the natural pressure drainage group was higher than that in the negative pressure drainage group [(33.24 ± 3.52) vs. (32.17 ± 5.03), P < 0.05]; The hemoglobin on the first postoperative day in the natural pressure drainage group was higher than that in the negative pressure drainage group [(126.01 ± 15.03) vs. (115.19 ± 16.25), P < 0.01]; The drainage volume on the first postoperative day in the natural pressure drainage group was lower than that in the negative pressure drainage group [(93.25 ± 63.58) ml vs. (119.46 ± 54.48) ml, P < 0.01]; The total postoperative drainage volume in the natural pressure drainage group was lower than that in the negative pressure drainage group [(355.60 ± 189.69) ml vs. (434.37 ± 149.12) ml, P < 0.01]; The indwelling time of drainage tube in the natural pressure drainage group was lower than that in the negative pressure drainage group [(3.29 ± 1.17) d vs. (3.45 ± 0.97) d, P < 0.05]. There was no significant difference in platelet count on the first postoperative day, postoperative hospital stays, and complications (incision infection and hematoma) between the two groups (P > 0.05). CONCLUSION: Bilateral natural pressure drainage and negative pressure drainage can achieve good drainage effects after PLIF, but patients with natural pressure drainage have less loss of albumin and hemoglobin, less drainage volume, and shorter drainage tube indwelling time, which is worthy of clinical application.


Assuntos
Albuminas , Drenagem , Feminino , Masculino , Humanos , Estudos Retrospectivos , Pressão Sanguínea , Índice de Massa Corporal
16.
Entropy (Basel) ; 25(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36981349

RESUMO

The adversarial attack is crucial to improving the robustness of deep learning models; they help improve the interpretability of deep learning and also increase the security of the models in real-world applications. However, existing attack algorithms mainly focus on image classification tasks, and they lack research targeting object detection. Adversarial attacks against image classification are global-based with no focus on the intrinsic features of the image. In other words, they generate perturbations that cover the whole image, and each added perturbation is quantitative and undifferentiated. In contrast, we propose a global-to-local adversarial attack based on object detection, which destroys important perceptual features of the object. More specifically, we differentially extract gradient features as a proportion of perturbation additions to generate adversarial samples, as the magnitude of the gradient is highly correlated with the model's point of interest. In addition, we reduce unnecessary perturbations by dynamically suppressing excessive perturbations to generate high-quality adversarial samples. After that, we improve the effectiveness of the attack using the high-frequency feature gradient as a motivation to guide the next gradient attack. Numerous experiments and evaluations have demonstrated the effectiveness and superior performance of our from global to Local gradient attacks with high-frequency momentum guidance (GLH), which is more effective than previous attacks. Our generated adversarial samples also have excellent black-box attack ability.

17.
New Phytol ; 236(1): 165-181, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35739643

RESUMO

In acidic soils, aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield. STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) was a critical factor in detoxifying Al stress. Under Al stress, STOP1 expression was not induced, although STOP1 protein accumulated, even in the presence of RAE1 (STOP1 DEGRADATION E3-LIGASE). How the Al stress triggers and stabilises the accumulation of STOP1 is still unknown. Here, we characterised SlSTOP1-interacting zinc finger protein (SlSZP1) using a yeast-two-hybrid screening, and generated slstop1, slszp1 and slstop1/slszp1 knockout mutants using clustered regularly interspaced short palindromic repeats (CRISPR) in tomato. SlSZP1 is induced by Al stress but it is not regulated by SlSTOP1. The slstop1, slszp1 and slstop1/slszp1 knockout mutants exhibited hypersensitivity to Al stress. The expression of SlSTOP1-targeted genes, such as SlRAE1 and SlASR2 (ALUMINUM SENSITIVE), was inhibited in both slstop1 and slszp1 mutants, but not directly regulated by SlSZP1. Furthermore, the degradation of SlSTOP1 by SlRAE1 was prevented by SlSZP1. Al stress increased the accumulation of SlSTOP1 in wild-type (WT) but not in slszp1 mutants. The overexpression of either SlSTOP1 or SlSZP1 did not enhance plant Al resistance. Altogether, our results show that SlSZP1 is an important factor for protecting SlSTOP1 from SlRAE1-mediated degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alumínio/metabolismo , Alumínio/toxicidade , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
18.
Exp Eye Res ; 222: 109157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718188

RESUMO

Diabetic retinopathy (DR) is a high-incidence microvascular complication with retinal neovascularization that generates irreversible visual impairment. However, the mechanism of DR is unclear and needs to be further explored. To explore the the effects of crocetin on expression of NEAT1 and miR-125b-5p and the proliferation activity, migration ability, and angiogenesis ability of human retinal microvascular endothelial cells (hRMECs), RT-qPCR, CCK-8, Transwell, and tube formation assays were performed. Additionally, Western blot was used to detect the expression of SOX7, VEGFA and CD31. Furthermore, a dual-luciferase reporter gene was used to verify the targeting connection. The DR mouse model was constructed by STZ. The effect of crocetin on DR angiogenesis was detected by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), retinal digest preparations and Western blot. The results showed that crocetin inhibited the high-glucose (Hg)-induced upregulation of NEAT1 and SOX7 and the downregulation of miR-125b-5p. Crocetin inhibited Hg-induced proliferation, migration and angiogenesis by upregulating the targeted inhibition of SOX7 by miR-125b-5p through the inhibition of NEAT1. To summarize, our study revealed that crocetin has a protective effect on Hg-induced DR by regulating the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , RNA Longo não Codificante , Animais , Carotenoides , Proliferação de Células , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glucose/toxicidade , Humanos , Camundongos , MicroRNAs/genética , Neovascularização Patológica/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXF/metabolismo , Vitamina A/análogos & derivados
19.
Nitric Oxide ; 118: 59-65, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848361

RESUMO

S-nitrosothiols (RSNOs) are an important group of nitric oxide (NO)-donating compounds with low toxicity and wide biomedical applications. In this paper, we, for the first time, demonstrate that the concentration of buffer remarkably affects the stability of RSNOs including naturally occurring S-nitrosoglutathione (GSNO) and synthetic S-nitroso-N-acetylpenicillamine (SNAP). For a solution with a high concentration of GSNO (e.g., 50 mM) and an initial near-neutral pH, the optimal buffer concentration is close to the GSNO concentration under our experimental conditions. A lower buffer concentration does not have adequate buffer capacity to resist the pH drop caused by GSNO decomposition. The decreased solution pH further accelerates GSNO decomposition because GSNO is most stable at near-neutral pH according to our density functional theory (DFT) calculations. A higher-than-optimal buffer concentration also reduces the GSNO stability because buffer ingredients including phosphate, Tris base, and HEPES consume NO/N2O3. In contrast to GSNO, the highest SNAP stability is obtained when the starting solution at a neutral pH does not contain buffer species, and the stability decreases as the buffer concentration increases. This is because SNAP is more stable at mildly acidic pH and the SNAP decomposition-induced pH drop stabilizes the donor. When the RSNO concentration is low (e.g., 1 mM), the buffer concentration also matters because any excess buffer accelerates the donor decomposition. Since the effect of buffer concentration was previously overlooked and suboptimal buffer concentrations were often used, this paper will aid in the formulation of RSNO solutions to obtain the maximum stability for prolonged storage and sustained NO release.


Assuntos
S-Nitrosotióis/química , Soluções/química , Soluções Tampão , Teoria da Densidade Funcional , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Modelos Químicos , Óxidos de Nitrogênio/química , Água/química
20.
BMC Infect Dis ; 22(1): 824, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348467

RESUMO

BACKGROUND: Tuberculosis (TB) represents a bacterial infection affecting many individuals each year and potentially leading to death. Overexpression of transforming growth factor (TGF)-ß1 has a primary immunomodulatory function in human tuberculosis. This work aimed to develop nanoliposomes to facilitate the delivery of anti-tubercular products to THP-1-derived human macrophages as Mycobacterium host cells and to evaluate drug efficiencies as well as the effects of a TGF-ß1-specific short interfering RNA (siRNA) delivery system employing nanoliposomes. METHODS: In the current study, siTGF-ß1 nanoliposomes loaded with the anti-TB drugs HRZ (isoniazid, rifampicin, and pyrazinamide) were prepared and characterized in vitro, determining the size, zeta potential, morphology, drug encapsulation efficiency (EE), cytotoxicity, and gene silencing efficiency of TGF-ß1 siRNA. RESULTS: HRZ/siTGF-ß1 nanoliposomes appeared as smooth spheres showing the size and positive zeta potential of 168.135 ± 0.5444 nm and + 4.03 ± 1.32 mV, respectively. Drug EEs were 90%, 88%, and 37% for INH, RIF, and PZA, respectively. Meanwhile, the nanoliposomes were weakly cytotoxic towards human macrophages as assessed by the MTT assay. Nanoliposomal siTGF-ß1 could significantly downregulate TGF-ß1 in THP-1-derived human macrophages in vitro. CONCLUSION: These findings suggested that HRZ-loaded nanoliposomes with siTGF-ß1 have the potential for improving spinal tuberculosis chemotherapy via nano-encapsulation of anti-TB drugs.


Assuntos
Fator de Crescimento Transformador beta1 , Tuberculose da Coluna Vertebral , Humanos , RNA Interferente Pequeno , Fator de Crescimento Transformador beta1/genética , Preparações Farmacêuticas , Isoniazida , Rifampina/farmacologia , Antituberculosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA