Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.943
Filtrar
1.
EMBO J ; 43(13): 2759-2788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769438

RESUMO

Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Lisina , Ubiquitinação , Humanos , Lisina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estresse Fisiológico , Células HEK293 , Proliferação de Células , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação ao GTP
2.
Proc Natl Acad Sci U S A ; 121(4): e2305745121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236731

RESUMO

The development of vaccines, which induce effective immune responses while ensuring safety and affordability, remains a substantial challenge. In this study, we proposed a vaccine model of a restructured "head-to-tail" dimer to efficiently stimulate B cell response. We also demonstrate the feasibility of using this model to develop a paramyxovirus vaccine through a low-cost rice endosperm expression system. Crystal structure and small-angle X-ray scattering data showed that the restructured hemagglutinin-neuraminidase (HN) formed tetramers with fully exposed quadruple receptor binding domains and neutralizing epitopes. In comparison with the original HN antigen and three traditional commercial whole virus vaccines, the restructured HN facilitated critical epitope exposure and initiated a faster and more potent immune response. Two-dose immunization with 0.5 µg of the restructured antigen (equivalent to one-127th of a rice grain) and one-dose with 5 µg completely protected chickens against a lethal challenge of the virus. These results demonstrate that the restructured HN from transgenic rice seeds is safe, effective, low-dose useful, and inexpensive. We provide a plant platform and a simple restructured model for highly effective vaccine development.


Assuntos
Oryza , Paramyxovirinae , Vacinas Virais , Animais , Galinhas , Vírus da Doença de Newcastle , Oryza/genética , Desenho Universal , Epitopos , Anticorpos Antivirais
3.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059420

RESUMO

The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knockdown (KD) or knockout (KO), we combine the inactivation of the Arp2/3 inhibitory protein arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit CYFIP2, all of which enhance the polymerization of cortical branched actin. Inactivation of the three negative regulators of cortical branched actin increases migration persistence of human breast MCF10A cells and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO cells, but not in triple KD cells, the 'super-migrator' phenotype was associated with a heterogenous downregulation of vimentin (VIM) expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells largely restored normal persistence of single cell migration, suggesting that vimentin downregulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.


Assuntos
Actinas , Peixe-Zebra , Animais , Humanos , Actinas/metabolismo , Vimentina/genética , Vimentina/metabolismo , Peixe-Zebra/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/fisiologia , Proteínas de Transporte/metabolismo
4.
Plant Physiol ; 194(2): 684-697, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37850874

RESUMO

The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligases/metabolismo , Tamanho do Órgão , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
EMBO Rep ; 24(9): e56230, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37489617

RESUMO

Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Antineoplásicos/uso terapêutico , Dano ao DNA , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína BRCA1/genética
6.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38342690

RESUMO

Migraine without aura is a multidimensional neurological disorder characterized by sensory, emotional, and cognitive symptoms linked to structural and functional abnormalities in the anterior cingulate cortex. Anterior cingulate cortex subregions play differential roles in the clinical symptoms of migraine without aura; however, the specific patterns and mechanisms remain unclear. In this study, voxel-based morphometry and seed-based functional connectivity were used to investigate structural and functional alterations in the anterior cingulate cortex subdivisions in 50 patients with migraine without aura and 50 matched healthy controls. Compared with healthy controls, patients exhibited (1) decreased gray matter volume in the subgenual anterior cingulate cortex, (2) increased functional connectivity between the bilateral subgenual anterior cingulate cortex and right middle frontal gyrus, and between the posterior part of anterior cingulate cortex and right middle frontal gyrus, orbital part, and (3) decreased functional connectivity between the anterior cingulate cortex and left anterior cingulate and paracingulate gyri. Notably, left subgenual anterior cingulate cortex was correlated with the duration of each attack, whereas the right subgenual anterior cingulate cortex was associated with migraine-specific quality-of-life questionnaire (emotion) and self-rating anxiety scale scores. Our findings provide new evidence supporting the hypothesis of abnormal anterior cingulate cortex subcircuitry, revealing structural and functional abnormalities in its subregions and emphasizing the potential involvement of the left subgenual anterior cingulate cortex-related pain sensation subcircuit and right subgenual anterior cingulate cortex -related pain emotion subcircuit in migraine.


Assuntos
Giro do Cíngulo , Enxaqueca sem Aura , Humanos , Giro do Cíngulo/diagnóstico por imagem , Enxaqueca sem Aura/diagnóstico por imagem , Córtex Cerebral , Dor/diagnóstico por imagem , Emoções , Imageamento por Ressonância Magnética/métodos
7.
Mol Ther ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822524

RESUMO

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

8.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593087

RESUMO

Flatband localization endowed with robustness holds great promise for disorder-immune light transport, particularly in the advancement of optical communication and signal processing. However, effectively harnessing these principles for practical applications in nanophotonic devices remains a significant challenge. Herein, we delve into the investigation of on-chip photonic localization in AB cages composed of indirectly coupled microring lattices. By strategically vertically shifting the auxiliary rings, we successfully introduce a magnetic flux of π into the microring lattice, thereby facilitating versatile control over the localization and delocalization of light. Remarkably, the compact edge modes of this structure exhibit intriguing topological properties, rendering them strongly robust against disorders, regardless of the size of the system. Our findings open up new avenues for exploring the interaction between flatbands and topological photonics on integrated platforms.

9.
Am J Respir Cell Mol Biol ; 70(3): 178-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029327

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal progressive disease with elusive molecular mechanisms and limited therapeutic options. Aberrant activation of fibroblasts is a central hallmark of lung fibrosis. Here, we report that Golgi membrane protein 1 (GOLM1, also known as GP73 or GOLPH2) was increased in the lungs of patients with pulmonary fibrosis and mice with bleomycin (BLM)-induced pulmonary fibrosis. Loss of GOLM1 inhibited proliferation, differentiation, and extracellular matrix deposition of fibroblasts, whereas overexpression of GOLM1 exerted the opposite effects. Similarly, worsening pulmonary fibrosis after BLM treatment was observed in GOLM1-knock-in mice, whereas BLM-treated Golm1-knockout mice exhibited alleviated pulmonary fibrosis and collagen deposition. Furthermore, we identified long noncoding RNA NEAT1 downstream of GOLM1 as a potential mediator of pulmonary fibrosis through increased GOLM1 expression. Depletion of NEAT1 inhibited fibroblast proliferation and extracellular matrix production and reversed the profibrotic effects of GOLM1 overexpression. Additionally, we identified KLF4 as a downstream mediator of GOLM1 signaling to NEAT1. Our findings suggest that GOLM1 plays a pivotal role in promoting pulmonary fibrosis through the GOLM1-KLF4-NEAT1 signaling axis. Targeting GOLM1 and its downstream pathways may represent a novel therapeutic strategy for treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina , Matriz Extracelular , Fibroblastos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Proteínas de Membrana/genética , Camundongos Knockout , Regulação para Cima
10.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717282

RESUMO

In this study, we investigated the role of aluminum cations in facilitating hydride transfer during the hydrogenation of imines within the context of Noyori-type metal-ligand cooperative catalysis. We propose a novel model involving aluminum cations directly coordinated with imines to induce activation from the lone pair electron site, a phenomenon termed σ-induced activation. The aluminum metal-hydride amidate complex ("HMn-NAl") exhibits a higher ability of hydride transfer in the hydrogenation of imines compared to its lithium counterpart ("HMn-NLi"). Density functional theory (DFT) calculations uncover that the aluminum cation efficiently polarizes unsaturated bonds through σ-electron-induced activation in the transition state of hydride transfer, thereby enhancing substrate electrophilicity more efficiently. Additionally, upon substrate coordination, aluminum's coordination saturation improves the hydride nucleophilicity of the HMn-NAl complex via the breakage of the Al-H coordination bond.

11.
Funct Integr Genomics ; 24(3): 113, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862712

RESUMO

Myocardial infarction (MI) results in prolonged ischemia and the subsequent cell death leads to heart failure which is linked to increased deaths or hospitalizations. New therapeutic targets are urgently needed to prevent cell death and reduce infarct size among patients with MI. Runt-related transcription factor-1 (RUNX1) is a master-regulator transcription factor intensively studied in the hematopoietic field. Recent evidence showed that RUNX1 has a critical role in cardiomyocytes post-MI. The increased RUNX1 expression in the border zone of the infarct heart contributes to decreased cardiac contractile function and can be therapeutically targeted to protect against adverse cardiac remodelling. This study sought to investigate whether pharmacological inhibition of RUNX1 function has an impact on infarct size following MI. In this work we demonstrate that inhibiting RUNX1 with a small molecule inhibitor (Ro5-3335) reduces infarct size in an in vivo rat model of acute MI. Proteomics study using data-independent acquisition method identified increased cathepsin levels in the border zone myocardium following MI, whereas heart samples treated by RUNX1 inhibitor present decreased cathepsin levels. Cathepsins are lysosomal proteases which have been shown to orchestrate multiple cell death pathways. Our data illustrate that inhibition of RUNX1 leads to reduced infarct size which is associated with the suppression of cathepsin expression. This study demonstrates that pharmacologically antagonizing RUNX1 reduces infarct size in a rat model of acute MI and unveils a link between RUNX1 and cathepsin-mediated cell death, suggesting that RUNX1 is a novel therapeutic target that could be exploited clinically to limit infarct size after an acute MI.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Infarto do Miocárdio , Proteômica , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/tratamento farmacológico , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Ratos , Masculino , Modelos Animais de Doenças , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Miocárdio/metabolismo , Miocárdio/patologia
12.
Biochem Biophys Res Commun ; 719: 150117, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761635

RESUMO

The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Resistencia a Medicamentos Antineoplásicos , Espécies Reativas de Oxigênio , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Leucemia Monocítica Aguda/tratamento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Compostos Férricos/farmacologia
13.
Small ; 20(13): e2307201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950403

RESUMO

Power generation from water-triggered capillary action in porous structures has recently geared extensive attention, offering the potential for generating electricity from ubiquitous water evaporation. However, conclusively establishing the nature of electrical generation and charge transfer is extremely challenging arising from the complicated aqueous solid-liquid interfacial phenomenon. Here, an electric probe-integrated microscope is developed to on-line monitor the correlation between water capillary action and potential values at any desired position of an active layer. With a probe spatial resolution reaching up to fifty micrometers, the internal factors prevailing over the potential distribution across the whole wet and dry regions are comprehensively identified. Further, the self-powered sensing capabilities of this integrated system are also demonstrated, including real-time monitoring of wind speed, environmental humidity, ionic strength, and inclination angle of generators. The combination of electric potential and chemical color indicator suggests that charge generation is likely correlated with ion-selective transport in the nanoporous channel during the water infiltration process. And unipolar ions (for instance protons) should be the dominant charge-transfer species. The work reveals the fundamental principles regulating charge generation/transfer during the water-triggered electric generation process.

14.
Small ; 20(3): e2302550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726238

RESUMO

The structural coloration of textiles with bionic photonic crystals (PCs) is expected to become a critical approach to the ecological coloration of textiles. Rapid and large-area preparation of PC structurally colored textiles can be achieved via self-assembly of high mass fractions of liquid photonic crystals (LPCs). However, the rapid and large-scale manufacturing of LPCs remains a challenge. In this work, the pH regulator is added in the process of emulsion polymerization to solve the problem of phase transformation caused by the thermal decomposition of the initiator to produce H+ , directly achieving 40 wt.% PS nanospheres in the dispersion. Then oligomers and small-molecule salts are removed from the system via dialysis, and the pre-crystallized LPC system is efficiently prepared. Adjusting the particle size and the mass fraction of nanospheres is shown to be an efficient way to control the optical properties of LPCs. The rapid and large-area preparation of PC structural color fabric and the patterned PC structural color fabric with an iridescent effect is implemented by using LPCs as the assembly intermediate. By constructing the encapsulation layer on the surface of the PC structural color fabric, the consistency of high structural stability and high color saturation of the PC is realized.

15.
Small ; : e2400771, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751055

RESUMO

Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.

16.
Mol Carcinog ; 63(7): 1303-1318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634741

RESUMO

The expression pattern of MUC1-C in tumors is closely linked to tumor progression; however, its specific mechanism remains unclear. The expression of MUC1-C in cancer and adjacent normal tissues was detected using immunohistochemistry and Western blot. The IC50 of cells to gemcitabine was determined using the CCK8 assay. The effects of hypoxia and MUC1-C on the behavioral and metabolic characteristics of bladder cancer cells were investigated. Gene expression was assessed through Western blot and polymerase chain reaction. The relationship between the genes was analyzed by co-immunoprecipitation, immunofluorescence and Western blot. Finally, the role of the EGLN2 and NF-κB signaling pathways in the interaction between MUC1-C and hypoxia-inducible factor-1α (HIF-1α) was investigated. MUC1-C expression is significantly higher in bladder cancer tissues than in adjacent normal tissues, particularly in large-volume tumors, and is closely correlated with clinical features such as tumor grade. Tumor volume-mediated hypoxia resulted in increased expression of MUC1-C and HIF-1α in bladder cancer cells. Under stimulation of hypoxia, the inhibitory effect of EGLN2 on the NF-κB signaling pathway was weakened, allowing NF-κB to promote the positive feedback formation of MUC1-C and HIF-1α. Simultaneously, EGLN2-mediated degradation of HIF-1α was reduced. This ultimately led to elevated HIF-1α-mediated downstream gene expression, promoting increased glucose uptake and glycolysis, and ultimately resulting in heightened chemotherapy resistance and malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Mucina-1 , Transdução de Sinais , Neoplasias da Bexiga Urinária , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Gencitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Mucina-1/metabolismo , Mucina-1/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética
17.
J Transl Med ; 22(1): 448, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741137

RESUMO

PURPOSE: The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS: A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS: The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION: Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Lipidômica , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Retinopatia Diabética/sangue , Retinopatia Diabética/diagnóstico , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Estudos de Casos e Controles , Lipídeos/sangue , Idoso , Análise Discriminante , Fatores de Risco , Análise dos Mínimos Quadrados
18.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459588

RESUMO

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Fibrose , Hepatite B/complicações , Vírus da Hepatite B , Inflamação/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo
19.
New Phytol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934055

RESUMO

Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.

20.
Clin Genet ; 105(1): 52-61, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37822034

RESUMO

Haplotype-based noninvasive prenatal diagnosis (NIPD) is applicable for various recessive single-gene disorders in proband families. However, a comprehensive exploration of critical factors influencing the assay performance, such as fetal fraction, informative single nucleotide polymorphism (SNP) count, and recombination events, has yet to be performed. It is critical to identify key factors affecting NIPD performance, including its accuracy and success rate, and their impact on clinical diagnostics to guide clinical practice. We conducted a prospective study, recruiting 219 proband families with singleton pregnancies at risk for eight recessive single-gene disorders (Duchenne muscular dystrophy, spinal muscular atrophy, phenylketonuria, methylmalonic acidemia, hemophilia A, hemophilia B, non-syndromic hearing loss, and congenital adrenal hyperplasia) at 7-14 weeks of gestation. Haplotype-based NIPD was performed by evaluating the relative haplotype dosage (RHDO) in maternal circulation, and the results were validated via invasive prenatal diagnosis or newborn follow-ups. Among the 219 families, the median gestational age at first blood draw was 8+5 weeks. Initial testing succeeded for 190 families and failed for 29 due to low fetal fraction (16), insufficient informative SNPs (9), and homologous recombination near pathogenic variation (4). Among low fetal fraction families, successful testing was achieved for 11 cases after a redraw, while 5 remained inconclusive. Test failures linked to insufficient informative SNPs correlated with linkage disequilibrium near the genes, with F8 and MMUT exhibiting the highest associated failure rates (14.3% and 25%, respectively). Homologous recombination was relatively frequent around the DMD and SMN1 genes (8.8% and 4.8%, respectively) but led to detection failure in only 44.4% (4/9) of such cases. All NIPD results from the 201 successful families were consistent with invasive diagnostic findings or newborn follow-up. Fetal fraction, informative SNPs count, and homologous recombination are pivotal to NIPD performance. Redrawing blood effectively improves the success rate for low fetal fraction samples. However, informative SNPs count and homologous recombination rates vary significantly across genes, necessitating careful consideration in clinical practice. We have designed an in silico method based on linkage disequilibrium data to predict the number of informative SNPs. This can identify genomic regions where there might be an insufficient number of SNPs, thereby guiding panel design. With these factors properly accounted for, NIPD is highly accurate and reliable.


Assuntos
Distrofia Muscular de Duchenne , Teste Pré-Natal não Invasivo , Gravidez , Feminino , Recém-Nascido , Humanos , Lactente , Teste Pré-Natal não Invasivo/métodos , Haplótipos/genética , Estudos Prospectivos , Diagnóstico Pré-Natal/métodos , Distrofia Muscular de Duchenne/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA