Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Physiol Mol Biol Plants ; 30(4): 633-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737320

RESUMO

ALDH (Aldehyde dehydrogenase), as an enzyme that encodes the dehydroxidization of aldehydes into corresponding carboxylic acids, played an important role inregulating gene expression in response to many kinds of biotic and abiotic stress, including saline-alkali stress. Saline-alkali stress was a common stress that seriously affected plant growth and productivity. Saline-alkali soil contained the characteristics of high salinity and high pH value, which could cause comprehensive damage such as osmotic stress, ion toxicity, high pH, and HCO3-/CO32- stress. In our study, 18 PaALDH genes were identified in sweet cherry genome, and their gene structures, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Quantitative real-time PCR confirmed that PaALDH17 exhibited the highest expression compared to other members under saline-alkali stress. Subsequently, it was isolated from Prunus avium, and transgenic A. thaliana was successfully obtained. Compared with wild type, transgenic PaALDH17 plants grew better under saline-alkali stress and showed higher chlorophyll content, Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) enzyme activities, which indicated that they had strong resistance to stress. These results indicated that PaALDH17 improved the resistance of sweet cherries to saline-alkali stress, which in turn improved quality and yields. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01444-7.

2.
Mol Genet Genomics ; 298(4): 845-855, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069340

RESUMO

Gibberellin, as one of the pivotal plant growth regulators, can improve fruit quality by altering fruit size and secondary metabolite content. Flavonoids are the most abundant secondary metabolites in grapes, which influence the color and quality of the fruit. However, the molecular mechanism of whether and how GA3 affects flavonoid metabolism has not been reported, especially for the 'Red globe' grape with delayed cultivation in Hexi corridor. In the present study, the 'Red globe' grape grown in delayed facilities was sprayed with 20, 40, 60, 80 and 100 mg/L GA3 at berries pea size (BPS), veraison (V) and berries ripe (BR), respectively. The results showed that the berry weight, soluble sugar content and secondary metabolite content (the flavonoid content, anthocyanin content and polyphenol content) at BR under 80 mg/L GA3 treatment were remarkably increased compared with other concentration treatments. Therefore, RNA sequencing (RNA-seq) was used to analyze the differentially expressed genes (DEGS) and pathways under 80 mg/L GA3 treatment at three periods. GO analysis showed that DEGs were closely related to transporter activity, cofactor binding, photosynthetic membrane, thylakoid, ribosome biogenesis and other items. The KEGG enrichment analysis found that the DEGs were mainly involved in flavonoid biosynthesis and phenylpropanoid biosynthesis, indicating GA3 exerted an impact on the color and quality of berries through these pathways. In conclusion, GA3 significantly increased the expression of genes related to flavonoid synthesis, enhanced the production of secondary metabolites, and improved fruit quality. In addition, these findings can provide a theoretical basis for GA3 to modulate the accumulation and metabolism of flavonoids in grape fruit.


Assuntos
Vitis , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Reguladores de Crescimento de Plantas/genética , Flavonoides/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas
3.
Physiol Plant ; 175(6): e14091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148182

RESUMO

Iron (Fe), as an important micronutrient element necessary for plant growth and development, not only participates in multiple physiological and biochemical reactions in cells but also exerts a crucial role in respiration and photosynthetic electron transport. Since Fe is mainly present in the soil in the form of iron hydroxide, Fe deficiency exists universally in plants and has become an important factor triggering crop yield reduction and quality decline. It has been shown that transcription factors (TFs), as an important part of plant signaling pathways, not only coordinate the internal signals of different interaction partners during plant development, but also participate in plant responses to biological and abiotic stresses, such as Fe deficiency stress. Here, the role of bHLH transcription factors in the regulation of Fe homeostasis (mainly Fe uptake) is discussed with emphasis on the functions of MYB, WRKY and other TFs in the maintenance of Fe homeostasis. This review provides a theoretical basis for further studies on the regulation of TFs in Fe deficiency stress response.


Assuntos
Deficiências de Ferro , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Physiol Mol Biol Plants ; 29(6): 799-813, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520810

RESUMO

Carotenoids are powerful antioxidants that mediate transfer of electrons, directly affect abiotic stress responses in plants through regulating activity of antioxidant enzymes. ζ-Carotene desaturase (ZDS) is a key enzyme in carotenoid biosynthesis pathway, which can catalyze ζ-carotene to form lycopene to regulate carotenoid biosynthesis and accumulation. However, the mechanism of its regulation of saline-alkali stress remains unclear. In this research, based on transcriptomic analysis of Malus halliana with a apple rootstock, we screened out ZDS gene (LOC103451012), with significantly high expression by saline-alkali stress, whose expression in the leaves was 10.8-fold than that of the control (0 h) under 48 h of stress. Subsequently, the MhZDS gene was isolated from M. halliana, and transgenic Arabidopsis thaliana, tobacco, and apple calli were successfully obtained through agrobacterium-mediated genetic transformation. We found that overexpression of MhZDS enhanced the tolerance of A. thaliana, tobacco and apple calli under saline-alkali stress and caused a variety of physiological and biochemical changes: compared with wild-type, transgenic plants grew better under saline stress and MhZDS-OE lines showed higher chlorophyll content, POD, SOD, CAT activities and proline content, lower electrical conductivity and MDA content. These results indicate that MhZDS plays an important role in plant resistance to saline-alkali stress, providing excellent resistance genes for the regulatory network of salinity stress response in apples and provide a theoretical basis for the breeding of apple varieties with strong saline-alkali resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01333-5.

5.
Diabetologia ; 65(12): 2044-2055, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102938

RESUMO

AIMS/HYPOTHESIS: Cancer has contributed to an increasing proportion of diabetes-related deaths, while lifestyle management is the cornerstone of both diabetes care and cancer prevention. We aimed to evaluate the associations of combined healthy lifestyles with total and site-specific cancer risks among individuals with diabetes. METHODS: We included 92,239 individuals with diabetes but without cancer at baseline from five population-based cohorts in the USA (National Health and Nutrition Examination Survey and National Institutes of Health [NIH]-AARP Diet and Health Study), the UK (UK Biobank study) and China (Dongfeng-Tongji cohort and Kailuan study). Healthy lifestyle scores (range 0-5) were constructed based on current nonsmoking, low-to-moderate alcohol drinking, adequate physical activity, healthy diet and optimal bodyweight. Cox regressions were used to calculate HRs for cancer morbidity and mortality, adjusting for sociodemographic, medical and diabetes-related factors. RESULTS: During 376,354 person-years of follow-up from UK Biobank and the two Chinese cohorts, 3229 incident cancer cases were documented, and 6682 cancer deaths were documented during 1,089,987 person-years of follow-up in the five cohorts. The pooled multivariable-adjusted HRs (95% CIs) comparing participants with 4-5 vs 0-1 healthy lifestyle factors were 0.73 (0.61, 0.88) for incident cancer and 0.55 (0.46, 0.67) for cancer mortality, and ranged between 0.41 and 0.63 for oesophagus, lung, liver, colorectum, breast and kidney cancers. Findings remained consistent across different cohorts and subgroups. CONCLUSIONS/INTERPRETATION: This international cohort study found that adherence to combined healthy lifestyles was associated with lower risks of total cancer morbidity and mortality as well as several subtypes (oesophagus, lung, liver, colorectum, breast and kidney cancers) among individuals with diabetes.


Assuntos
Diabetes Mellitus , Neoplasias Renais , Humanos , Estudos de Coortes , Inquéritos Nutricionais , Estudos Prospectivos , Estilo de Vida Saudável , Morbidade , China/epidemiologia , Reino Unido/epidemiologia , Fatores de Risco
6.
Funct Integr Genomics ; 23(1): 17, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562852

RESUMO

Plant cuticular wax was a major consideration affecting the growth and quality of plants through protecting the plant from drought and other diseases. According to existing studies, CER1, as the core enzyme encoding the synthesis of alkanes, the main component of wax, can directly affect the response of plants to stress. However, there were few studies on the related functions of CER1 in apple. In this study, three MdCER1 genes in Malus domestica were identified and named MdCER1-1, MdCER1-2, and MdCER1-3 according to their distribution on chromosomes. Then, their physicochemical properties, sequence characteristics, and expression patterns were analyzed. MdCER1-1, with the highest expression level among the three members, was screened for cloning and functional verification. Real-time fluorescence quantitative PCR (qRT-PCR) analysis also showed that drought stress could increase the expression level of MdCER1-1. The experiment of water loss showed that overexpression of MdCER1-1 could effectively prevent water loss in apple calli, and the effect was more significant under drought stress. Meanwhile, MdYPB5, MdCER3, and MdKCS1 were significantly up-regulated, which would be bound up with waxy metabolism. Gas chromatography-mass spectrometer assay of wax fraction makes known that overexpression of MdCER1-1 apparently scaled up capacity of alkanes. The enzyme activities (SOD, POD) of overexpressed apple calli increased significantly, while the contents of proline increased compared with wild-type calli. In conclusion, MdCER1-1 can resist drought stress by reducing water loss in apple calli epidermis, increasing alkanes component content, stimulating the expression of waxy related genes (MdYPB5, MdCER3, and MdKCS1), and increasing antioxidant enzyme activity, which also provided a theoretical basis for exploring the role of waxy in other stresses.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Secas , Proteínas de Plantas/metabolismo , Água/metabolismo , Alcanos/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
7.
Planta ; 256(3): 51, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906360

RESUMO

MAIN CONCLUSION: qRT-PCR analysis showed that MhPR1 was strongly induced by saline-alkali stress. Overexpression of MhPR1 enhanced tolerance to saline-alkali stress in transgenic tobacco (Nicotiana tabacum L.) and apple calli. Abstract: Soil salinization seriously threaten apple growth in Northwest loess plateau of China. Malus halliana has developed special system to adapt to saline-alkali environmental stress. To obtain a more detailed understanding of the adaptation mechanisms involved in M. halliana, a transcriptomic approach was used to analyze the leaves' pathways in the stress and its regulatory mechanisms. RNA-Seq showed that among the 16,246 investigated unigenes under saline-alkali stress, 7268 genes were up-regulated and 8978 genes were down-regulated. KEGG analysis indicated that most of the enriched saline-alkali-responsive genes were mainly involved in plant hormone, calcium signal transduction, amino acids, carotenoid and flavonoids biosynthesis, carbon and phenylalanine metabolism, and other secondary metabolites. Expression profile analysis by quantitative real-time PCR confirmed that the maximum up-regulation of MhPR1 under saline-alkali stress was 7.1 folds in leaves. Overexpression of MhPR1 enhanced tolerance to saline-alkali stress in transgenic tobacco (Nicotiana tabacum L.) and apple calli. Taken together, our results demonstrate that MhPR1 encodes a saline-alkali-responsive transcriptional activator and provide valuable information for further study of PR1 functions in apple.


Assuntos
Malus , Álcalis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma
8.
J Nutr ; 152(7): 1755-1762, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35404464

RESUMO

BACKGROUND: It is unknown whether the Dietary Approaches to Stop Hypertension (DASH) dietary pattern is associated with other blood pressure (BP) variables, beyond mean systolic blood pressure (SBP) and diastolic blood pressure (DBP). OBJECTIVES: The study aimed to study the associations between the DASH dietary pattern and daytime and nighttime mean BPs and BP variance independent of the mean (VIM). METHODS: A sample of 324 Chinese adults aged ≥ 60 y who were not on BP-lowering medications were included in the analysis. The DASH score was calculated using data collected by a validated FFQ. The 24-h ambulatory BP was measured and the mean and VIM SBP and DBP were calculated for both the daytime (06:00-21:59) and nighttime periods (22:00-05:59). Multivariable linear models were constructed to assess associations between the DASH dietary pattern and daytime and nighttime BP outcomes, adjusting for sociodemographic factors, lifestyle, BMI, and hypertension (clinic SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg), and sleep parameters (only for nighttime BP outcomes). An interaction term between DASH score and hypertension status was added to explore the potential differential association in normotensive and hypertensive individuals. RESULTS: Every 1-unit increase in the DASH score was associated with a 0.18-unit (95% CI: -0.34, -0.01 unit) and a 0.22-unit (95% CI: -0.36, -0.09 unit) decrease in nighttime VIM SBP and nighttime VIM DBP, respectively. DASH score was not associated with any daytime BP outcomes, nighttime mean SBP, or nighttime mean DBP. A significant interaction (DASH score × hypertension status) was detected for VIM SBP (P-interaction = 0.04), indicating a differential association between DASH score and nighttime VIM SBP by hypertension status. CONCLUSIONS: Independently of sleep parameters and other factors, the DASH dietary pattern is associated with lower nighttime BP variability in elderly adults.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Adulto , Idoso , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial , China , Humanos , Hipertensão/tratamento farmacológico
9.
Planta ; 254(4): 78, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34536142

RESUMO

MAIN CONCLUSION: 51 MdbZIP genes were identified from the apple genome by bioinformatics methods. MhABF-OE improved tolerance to saline-alkali stress in Arabidopsis, indicating it is involved in positive regulation of saline-alkali stress response. Saline-alkali stress is a major abiotic stress limiting plant growth all over the world. Members of the bZIP family play an important role in regulating gene expression in response to many kinds of biotic and abiotic stress, including salt stress. According to the transcriptome data, 51 MdbZIP genes responding to saline-alkali stress were identified in apple genome, and their gene structures, conserved protein motifs, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Based on transcriptome data analysis, a MdbZIP family gene (MD15G1081800), which was highly expressed under stress, was selected to isolate and named as MhABF. Expression profile analysis by quantitative real-time PCR confirmed that the expression of MhABF in the leaves of Malus halliana was 10.6-fold higher than that of the control (0 days) after 2 days of stress. Then an MhABF gene was isolated from apple rootstock M. halliana. CaMV35S promoter drived MhABF gene expression vector was constructed to infect Arabidopsis with Agrobacterium-mediated infection. And overexpression MhABF gene plants were obtained. Compared with wild type, transgenic plants grew better under saline-alkali stress and the MhABF-OE lines showed higher chlorophyll content, POD, SOD and CAT activity, which indicated that they had strong resistance to stress. These results indicate that MhABF plays an important role in plant resistance to saline-alkali stress, which lays a foundation for further study on the functions in apple.


Assuntos
Arabidopsis , Malus , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Malus/genética , Malus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
10.
Nutr Metab Cardiovasc Dis ; 31(2): 420-428, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33223407

RESUMO

BACKGROUND AND AIMS: Efficient analysis strategies for complex network with cardiovascular disease (CVD) risk stratification remain lacking. We sought to identify an optimized model to study CVD prognosis using survival conditional inference tree (SCTREE), a machine-learning method. METHODS AND RESULTS: We identified 5379 new onset CVD from 2006 (baseline) to May, 2017 in the Kailuan I study including 101,510 participants (the training dataset). The second cohort composing 1,287 CVD survivors was used to validate the algorithm (the Kailuan II study, n = 57,511). All variables (e.g., age, sex, family history of CVD, metabolic risk factors, renal function indexes, heart rate, atrial fibrillation, and high sensitivity C-reactive protein) were measured at baseline and biennially during the follow-up period. Up to December 2017, we documented 1,104 deaths after CVD in the Kailuan I study and 170 deaths in the Kailuan II study. Older age, hyperglycemia and proteinuria were identified by the SCTREE as main predictors of post-CVD mortality. CVD survivors in the high risk group (presence of 2-3 of these top risk factors), had higher mortality risk in the training dataset (hazard ratio (HR): 5.41; 95% confidence Interval (CI): 4.49-6.52) and in the validation dataset (HR: 6.04; 95%CI: 3.59-10.2), than those in the lowest risk group (presence of 0-1 of these factors). CONCLUSION: Older age, hyperglycemia and proteinuria were the main predictors of post-CVD mortality. TRIAL REGISTRATION: ChiCTR-TNRC-11001489.


Assuntos
Doenças Cardiovasculares/mortalidade , Indicadores Básicos de Saúde , Aprendizado de Máquina , Fatores Etários , Idoso , Doenças Cardiovasculares/diagnóstico , Causas de Morte , China/epidemiologia , Feminino , Humanos , Hiperglicemia/mortalidade , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Proteinúria/mortalidade , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo
11.
Nutr J ; 20(1): 13, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522924

RESUMO

BACKGROUND: Studies regarding whether light to moderate alcohol consumption is associated with a lower risk of cardiovascular diseases (CVD) have generated mixed results. Further, few studies have examined the potential impact of alcohol consumption on diverse disease outcomes simultaneously. We aimed to prospectively study the dose-response association between alcohol consumption and risk of CVD, cancer, and mortality. METHODS: This study included 83,732 adult Chinese participants, free of CVD and cancer at baseline. Participants were categorized into 6 groups based on self-report alcohol consumption: 0, 1-25, 26-150, 151-350, 351-750, and > 750 g alcohol/wk. Incident cases of CVD, cancers, and mortality were confirmed by medical records. Hazard ratios (HRs) for the composite risk of these three outcomes, and each individual outcome, were calculated using Cox proportional hazard model. RESULTS: During a median follow-up of 10.0 years, there were 6411 incident cases of CVD, 2947 cancers and 6646 deaths. We observed a J-shaped relation between alcohol intake and risk of CVD, cancer, and mortality, with the lowest risk at 25 g/wk., which is equivalent to ~ 2 servings/wk. Compared to consuming 1-25 g/wk., the adjusted HR for composite outcomes was 1.38 (95% confidence interval (CI):1.29-1.49) for non-drinker, 1.15 (95% CI: 1.04-1.27) for 26-150 g/wk., 1.22 (95% CI: 1.10-1.34) for 151-350 g/wk., 1.33 (95% CI: 1.21-1.46) for 351-750 g/wk., and 1.57 (95% CI: 1.30-1.90) for > 750 g/wk., after adjusting for age, sex, lifestyle, social economic status, and medication use. CONCLUSIONS: Light alcohol consumption at ~ 25 g/wk was associated with lower risk of CVD, cancer, and mortality than none or higher consumption in Chinese adults.


Assuntos
Consumo de Bebidas Alcoólicas , Doenças Cardiovasculares , Neoplasias , Adulto , Consumo de Bebidas Alcoólicas/epidemiologia , Doenças Cardiovasculares/mortalidade , Humanos , Neoplasias/mortalidade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco
12.
New Phytol ; 228(6): 1897-1913, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32712992

RESUMO

Climate-driven phenological change across local spatial gradients leads to leaf shape variation. At higher elevations, leaves of broadleaf species tend to become narrower, but the underlying molecular mechanism is largely unknown. In this study, a series of morphometric analyses and biochemical assays, combined with functional identification in apple, were performed. We show that the decrease in apple leaf width with increasing altitude is controlled by a basic/helix-loop-helix transcription factor (bHLH TF), MdbHLH3. The MdbHLH3-overexpressing lines have a lower transcript abundance of MdPIN1 encoding an auxin efflux carrier but a higher transcript abundance of MdGH3-2 encoding a putative auxin amido conjugate synthase, resulting in a lower free auxin concentration; feeding the transgenic leaves with exogenous auxin partially restores leaf width. MdbHLH3 transcriptionally suppresses and activates MdPIN1 and MdGH3-2, respectively, by specifically binding to their promoters. This alters auxin homeostasis and transport, consequently leading to changes in leaf shape. These findings suggest that the bHLH TF MdbHLH3 directly modulates auxin signaling in controlling leaf shape in response to local spatial gradients in apple.


Assuntos
Malus , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus/genética , Malus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Phytopathology ; 109(4): 531-541, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30130146

RESUMO

The fungus Colletotrichum fructicola (a species of C. gloeosporioides complex) causes devastating anthracnose in strawberry. Like other species of the genus Colletotrichum, it uses a composite strategy including both the biotrophic and necrotrophic processes for pathogenesis. Host-derived hormones are central regulators of immunity, among which salicylic acid (SA) is the core defense one against biotrophic and hemibiotrophic pathogens. However, the manner and timing of pathogen manipulation of SA are largely elusive in strawberry. To achieve better understanding of the early challenges that SA-mediated defense experiences during strawberry/C. fructicola interaction, dynamic changes of SA levels were followed through the high-performance liquid chromatography method. A very early burst of free SA at 1 h postinoculation (hpi) followed by a fast quenching during the next 12 h was noticed, although rhythm variations were present in two hosts. Transcriptional characterization of genes related to SA pathway in two varieties on C. fructicola inoculation revealed that these genes were differentially expressed, although they were all induced at different time points. At the same time, three types of genes encoding homologous effectors interfering with SA accumulation were found to be first inhibited but sequentially activated during the first 24 hpi. Furthermore, subcellular localization analysis suggests that CfShy1 is a weapon of C. fructicola for strawberry invasion. Based on these results, we propose that the infection strategy that C. fructicola utilizes on strawberry is specialized, which is implemented through the optimized expression of a specific set of effector genes. Transcriptional characterization of host genes supports that de novo SA biosynthesis and the free SA release from methyl salicylate might contribute equally to the intricate control of SA homeostasis in strawberry. C. fructicola manipulation of SA-dependent resistance in strawberry might be closely related to multihormonal interplay among SA, jasmonic acid, abscisic acid, and cytokinin.


Assuntos
Colletotrichum , Fragaria , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Ácido Salicílico , Colletotrichum/genética , Colletotrichum/patogenicidade , Fragaria/genética , Fragaria/microbiologia , Doenças das Plantas/microbiologia
14.
Stroke ; 49(1): 27-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229723

RESUMO

BACKGROUND AND PURPOSE: Although diabetes mellitus is an established independent risk factor for ischemic stroke, the association between fasting blood glucose and intracerebral hemorrhage (ICH) is limited and inconsistent. The objective of the current study was to examine the potential impact of long-term fasting blood glucose concentration on subsequent risk of ICH. METHODS: This prospective study included 96 110 participants of the Kailuan study, living in Kailuan community, Tangshan city, China, who were free of cardiovascular diseases and cancer at baseline (2006). Fasting blood glucose concentration was measured in 2006, 2008, 2010, and 2012. Updated cumulative average fasting blood glucose concentration was used as primary exposure of the current study. Incident ICH from 2006 to 2015 was confirmed by review of medical records. RESULTS: During 817 531 person-years of follow-up, we identified 755 incident ICH cases. The nadir risk of ICH was observed at fasting blood glucose concentration of 5.3 mmol/L. The adjusted hazard ratios and their 95% confidence intervals (CIs) of ICH were 1.59 (95% CI, 1.26-2.02) for diabetes mellitus or fasting blood glucose ≥7.00 mmol/L, 1.31 (95% CI, 1.02-1.69) for impaired fasting blood glucose (fasting blood glucose, 6.10-6.99 mmol/L), 0.98 (95% CI, 0.78-1.22) for fasting blood glucose 5.60 to 6.09 mmol/L, and 2.04 (95% CI, 1.23-3.38) for hypoglycemia (fasting blood glucose, <4.00 mmol/L), comparing with normal fasting blood glucose 4.00 to 5.59 mmol/L. The results persisted after excluding individuals who used hypoglycemic, aspirin, antihypertensive agents, or anticoagulants, and those with intracerebral hemorrhagic cases occurred in the first 2 years of follow-up. CONCLUSIONS: In this large community-based cohort, low (<4.0 mmol/L) and high (≥6.1 mmol/L) fasting blood glucose concentrations were associated with higher risk of incident ICH, relative to fasting blood glucose concentrations of 4.00 to 6.09 mmol/L.


Assuntos
Glicemia/metabolismo , Hemorragia Cerebral , Jejum/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Hemorragia Cerebral/sangue , Hemorragia Cerebral/epidemiologia , China/epidemiologia , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
15.
BMC Genomics ; 19(1): 461, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902966

RESUMO

BACKGROUND: Iron (Fe) is an essential micronutrient for plants. Utilization of Fe deficiency-tolerant rootstock is an effective strategy to prevent Fe deficiency problems in fruit trees production. Malus halliana is an apple rootstock that is resistant to Fe deficiency; however, few molecular studies have been conducted on M. halliana. RESULTS: To evaluate short-term molecular response of M. halliana leaves under Fe deficiency condition, RNA sequencing (RNA-Seq) analyses were conducted at 0 (T1), 0.5 (T2) and 3 d (T3) after Fe-deficiency stress, and the timepoints were determined with a preliminary physiological experiment. In all, 6907, 5328, and 3593 differentially expressed genes (DEGs) were identified in pairs of T2 vs. T1, T3 vs. T1, and T3 vs. T2. Several of the enriched DEGs were related to heme binding, Fe ion binding, thylakoid membranes, photosystem II, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism and carotenoid biosynthesis under Fe deficiency, which suggests that Fe deficiency mainly affects the photosynthesis of M. halliana. Additionally, we found that Fe deficiency induced significant down-regulation in genes involved in photosynthesis at T2 when seedlings were treated with Fe-deficient solution for 0.5 d, indicating that there was a rapid response of M. halliana to Fe deficiency. A strong up-regulation of photosynthesis genes was detected at T3, which suggested that M. halliana was able to recover photosynthesis after prolonged Fe starvation. A similar expression pattern was found in pigment regulation, including genes for coding chlorophyllide a oxygenase (CAO), ß-carotene hydroxylase (ß-OHase), zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED). Our results suggest that pigment regulation plays an important role in the Fe deficiency response. In addition, we verified sixteen genes related to photosynthesis-antenna protein, porphyrin and chlorophyll metabolism and carotenoid biosynthesis pathways using quantitative real-time PCR (qRT-PCR) to ensure the accuracy of transcriptome data. Photosynthetic parameters, Chl fluorescence parameters and the activity of Chlase were also determined. CONCLUSIONS: This study broadly characterizes a molecular mechanism in which pigment and photosynthesis-related regulations play indispensable roles in the response of M. halliana to short-term Fe deficiency and provides a basis for future analyses of the key genes involved in the tolerance of Fe deficiency.


Assuntos
Ferro/fisiologia , Malus/genética , Fotossíntese/genética , Transcriptoma , Hidrolases de Éster Carboxílico/metabolismo , Clorofila , Fluorescência , Perfilação da Expressão Gênica , Ferro/química , Malus/enzimologia , Malus/crescimento & desenvolvimento , Malus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/enzimologia , Plântula/genética , Plântula/metabolismo , Análise de Sequência de RNA
16.
Mol Genet Genomics ; 293(6): 1523-1534, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30101382

RESUMO

Iron (Fe) deficiency is a frequent nutritional problem limiting apple production in calcareous soils. The utilization of rootstock that is resistant to Fe deficiency is an effective way to solve this problem. Malus halliana is an Fe deficiency-tolerant rootstock; however, few molecular studies have been conducted on M. halliana. In the present work, a transcriptome analysis was combined with qRT-PCR and sugar measurements to investigate Fe deficiency responses in M. halliana roots at 0 h (T1), 12 h (T2) and 72 h (T3) after Fe deficiency stress. Total of 2473, 661, and 776 differentially expressed genes (DEGs) were identified in the pairs of T2 vs. T1, T3 vs. T1, and T3 vs. T2, respectively. Several DEGs were enriched in the photosynthesis, glycolysis and gluconeogenesis, tyrosine metabolism and fatty acid degradation pathways. The glycolysis and photosynthesis pathways were upregulated under Fe deficiency. In this experiment, sucrose accumulated in Fe-deficient roots and leaves. However, the glucose content significantly decreased in the roots, while the fructose content significantly decreased in the leaves. Additionally, 15 genes related to glycolysis and sugar synthesis and sugar transport were selected to validate the accuracy of the transcriptome data by qRT-PCR. Overall, these results indicated that sugar synthesis and metabolism in the roots were affected by Fe deficiency. Sugar regulation is a way by which M. halliana responds to Fe deficiency stress.


Assuntos
Metabolismo dos Carboidratos/genética , Deficiências de Ferro , Malus/genética , Malus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Açúcares/análise , Açúcares/metabolismo , Transcriptoma/fisiologia
18.
Int Urogynecol J ; 26(8): 1201-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25990205

RESUMO

INTRODUCTION AND HYPOTHESIS: The aim of this study was to compare the technical feasibility and long-term anatomical and functional outcomes of a novel laparoscopic vaginoplasty using single peritoneal flap (SPF) and Davydov's laparoscopic technique in patients with Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. METHODS: From September 2004 to September 2013, a comparative study was conducted of 98 patients with MRKH syndrome who underwent either laparoscopic vaginoplasty using SPF (SPF group, 62 cases) or Davydov's laparoscopic technique (Davydov group, 36 cases) in a university-based tertiary care hospital. Intraoperative and postoperative parameters and anatomical examination findings of the two groups were compared. Functional results were assessed using the Female Sexual Function Index (FSFI). RESULTS: All surgical procedures were performed successfully, with no intraoperative complications in either group. Patients in the SPF group had a significantly shorter operative time and less intraoperative blood loss than patients in the Davydov group. The postoperative course was identical for all patients in the two groups. The mean length and width of the neovagina in the two groups at hospital discharge, the 6-month follow-up, and the 12-month follow-up did not differ significantly. There were no significant differences between the groups with regard to the postoperative FSFI scores at 12 months after surgery. CONCLUSIONS: Although the long-term anatomical and functional outcomes of the two laparoscopic peritoneal vaginoplasty techniques are similar, laparoscopic vaginoplasty using SPF, which has many advantages and is easily performed by the gynecologist, is a more feasible and effective approach to creating a neovagina in patients with MRKH syndrome.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/cirurgia , Anormalidades Congênitas/cirurgia , Procedimentos Cirúrgicos em Ginecologia/métodos , Laparoscopia/métodos , Ductos Paramesonéfricos/anormalidades , Vagina/cirurgia , Adolescente , Adulto , Coito , Dilatação , Feminino , Seguimentos , Humanos , Ductos Paramesonéfricos/cirurgia , Duração da Cirurgia , Sexualidade/fisiologia , Retalhos Cirúrgicos , Estruturas Criadas Cirurgicamente/fisiologia , Vagina/anormalidades , Cicatrização , Adulto Jovem
19.
Clin Exp Hypertens ; 37(8): 650-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114351

RESUMO

BACKGROUND: Seven ideal health metrics were defined by AHA to monitor cardiovascular health. This study aimed to investigate the impact of ideal cardiovascular health behaviors and factors on the development of hypertension in prehypertensive subjects. METHODS: Thirty-two thousand eight-hundred and eighty-seven participants with prehypertension were included in the study after excluding for preexisting stroke, myocardial infarction or malignancy. Cox proportional hazards regression was used to calculate hazard ratios and 95% confidence intervals [CI] for the development of hypertension. RESULTS: During a follow-up of 52.2 months, 15,500 prehypertensive participants developed hypertension. The cumulative incidence of hypertension decreased with the number of ideal health metrics increased. It was 78.61%, 71.08%, 63.15%, 56.07% and 61.62% in prehypertensive individuals carrying ≤ 1, 2, 3, 4 and ≥ 5 ideal health behaviors or factors, respectively. After adjustment for age, gender, family history of hypertension, alcohol consumption, resting heart rate, plasma triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-sensitivity C-reactive protein, the risk ratios of incident hypertension in the subjects who carried 2, 3, 4, and ≥ 5 ideal health metrics were 0.833 (95%CI: 0.789-0.880), 0.710 (95%CI: 0.672-0.749), 0.604 (95%CI: 0.568-0.642), and 0.581 (95%CI: 0.524-0.643), respectively, in comparison to those with ≤ 1 ideal health metric. A similar trend was also observed in male and female populations. Poor health metrics, including body mass index, diet (salt intake), physical activity, total cholesterol, and smoking, were predictors for the development of hypertension in prehypertensive individuals. CONCLUSION: Ideal cardiovascular health behaviors and factors are protective factors to prevent the progression from prehypertension to hypertension.


Assuntos
Sistema Cardiovascular/fisiopatologia , Comportamentos Relacionados com a Saúde , Hipertensão/prevenção & controle , Pré-Hipertensão/reabilitação , Medição de Risco/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , China/epidemiologia , Progressão da Doença , Feminino , Humanos , Hipertensão/epidemiologia , Hipertensão/etiologia , Incidência , Masculino , Pessoa de Meia-Idade , Pré-Hipertensão/complicações , Pré-Hipertensão/fisiopatologia , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
20.
Plants (Basel) ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611575

RESUMO

The effects of NaCl-induced salinity on biomass allocation, anatomical characteristics of leaves, ion accumulation, salt repellency, and salt secretion ability were investigated in two apple rootstock cultivars (Malus halliana '9-1-6' and Malus baccata), which revealed the physiological adaptive mechanisms of M. halliana '9-1-6' in response to salt stress factors. This experiment was conducted in a greenhouse using a nutrient solution pot. Salt stress was simulated by treating the plants with a 100 mM NaCl solution, while 1/2 Hoagland nutrient solution was used as a control (CK) instead of the NaCl solution. The results showed that the two rootstocks responded to salt environments by increasing the proportion of root biomass allocation. According to the stress susceptibility index, '9-1-6' exhibits a lower salt sensitivity index and a higher salt tolerance index. The thickness of the leaf, upper and lower epidermis, palisade tissue, and mesophyll tissue compactness (CTR) of the two rootstocks were significantly decreased, while the thickness of sponge tissue and mesophyll tissue looseness (SR) were significantly increased, and the range of '9-1-6' was smaller than that of M. baccata. With an extension of stress time, the accumulation of Na+ increased significantly, and the accumulation of K+ decreased gradually. The stem and leaves of '9-1-6' showed a lower accumulation of Na+ and a higher accumulation of K+, and the roots displayed a higher ability to reject Na+, as well as young and old leaves showed a stronger ability to secrete Na+. In conclusion, within a certain salt concentration range, the '9-1-6' root part can maintain lower salt sensitivity and a higher root-to-shoot ratio by increasing the proportion of root biomass allocation; the aerial part responds to salt stress through thicker leaves and a complete double-layer fence structure; the roots and stem bases can effectively reduce the transportation of Na+ to the aerial parts, as well as effectively secrete Na+ from the aerial parts through young and old leaves, thereby maintaining a higher K+/Na+ ratio in the aerial parts, showing a strong salt tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA