Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Nat Immunol ; 25(3): 525-536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356061

RESUMO

Regulatory T (Treg) cells are critical for immune tolerance but also form a barrier to antitumor immunity. As therapeutic strategies involving Treg cell depletion are limited by concurrent autoimmune disorders, identification of intratumoral Treg cell-specific regulatory mechanisms is needed for selective targeting. Epigenetic modulators can be targeted with small compounds, but intratumoral Treg cell-specific epigenetic regulators have been unexplored. Here, we show that JMJD1C, a histone demethylase upregulated by cytokines in the tumor microenvironment, is essential for tumor Treg cell fitness but dispensable for systemic immune homeostasis. JMJD1C deletion enhanced AKT signals in a manner dependent on histone H3 lysine 9 dimethylation (H3K9me2) demethylase and STAT3 signals independently of H3K9me2 demethylase, leading to robust interferon-γ production and tumor Treg cell fragility. We have also developed an oral JMJD1C inhibitor that suppresses tumor growth by targeting intratumoral Treg cells. Overall, this study identifies JMJD1C as an epigenetic hub that can integrate signals to establish tumor Treg cell fitness, and we present a specific JMJD1C inhibitor that can target tumor Treg cells without affecting systemic immune homeostasis.


Assuntos
Doenças Autoimunes , Humanos , Citocinas , Epigenômica , Histona Desmetilases , Homeostase , Oxirredutases N-Desmetilantes , Histona Desmetilases com o Domínio Jumonji/genética
2.
Nat Immunol ; 23(9): 1342-1354, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995859

RESUMO

Appropriate regulation of B cell differentiation into plasma cells is essential for humoral immunity while preventing antibody-mediated autoimmunity; however, the underlying mechanisms, especially those with pathological consequences, remain unclear. Here, we found that the expression of Jmjd1c, a member of JmjC domain histone demethylase, in B cells but not in other immune cells, protected mice from rheumatoid arthritis (RA). In humans with RA, JMJD1C expression levels in B cells were negatively associated with plasma cell frequency and disease severity. Mechanistically, Jmjd1c demethylated STAT3, rather than histone substrate, to restrain plasma cell differentiation. STAT3 Lys140 hypermethylation caused by Jmjd1c deletion inhibited the interaction with phosphatase Ptpn6 and resulted in abnormally sustained STAT3 phosphorylation and activity, which in turn promoted plasma cell generation. Germinal center B cells devoid of Jmjd1c also acquired strikingly increased propensity to differentiate into plasma cells. STAT3 Lys140Arg point mutation completely abrogated the effect caused by Jmjd1c loss. Mice with Jmjd1c overexpression in B cells exhibited opposite phenotypes to Jmjd1c-deficient mice. Overall, our study revealed Jmjd1c as a critical regulator of plasma cell differentiation and RA and also highlighted the importance of demethylation modification for STAT3 in B cells.


Assuntos
Artrite Reumatoide , Histona Desmetilases com o Domínio Jumonji , Animais , Diferenciação Celular , Hematopoese , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Circulation ; 148(25): 2038-2057, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37965787

RESUMO

BACKGROUND: Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS: We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS: We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS: These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Sirtuína 3 , Camundongos , Humanos , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ribonuclease P/metabolismo , Cloretos/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Cardiopatias/metabolismo , Camundongos Knockout , Oxirredutases/metabolismo
4.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34643234

RESUMO

Protein post-translational modifications (PTM) play vital roles in cellular regulation, modulating functions by driving changes in protein structure and dynamics. Exploring comprehensively the influence of PTM on conformational dynamics can facilitate the understanding of the related biological function and molecular mechanism. Currently, a series of excellent computation tools have been designed to analyze the time-dependent structural properties of proteins. However, the protocol aimed to explore conformational dynamics of post-translational modified protein is still a blank. To fill this gap, we present PTMdyna to visually predict the conformational dynamics differences between unmodified and modified proteins, thus indicating the influence of specific PTM. PTMdyna exhibits an AUC of 0.884 tested on 220 protein-protein complex structures. The case of heterochromatin protein 1α complexed with lysine 9-methylated histone H3, which is critical for genomic stability and cell differentiation, was used to demonstrate its applicability. PTMdyna provides a reliable platform to predict the influence of PTM on protein dynamics, making it easier to interpret PTM functionality at the structure level. The web server is freely available at http://ccbportal.com/PTMdyna.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Lisina/metabolismo , Conformação Proteica
5.
Plant Physiol ; 192(2): 1483-1497, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36810650

RESUMO

Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.


Assuntos
Artemisia annua , Tricomas , Tricomas/genética , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Exp Eye Res ; 239: 109786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211681

RESUMO

To investigate regional changes in the chick retina and choroid after hemifield form deprivation (HFD). Ten chicks were randomly and equally divided into a temporal retinal deprivation (TRD) and nasal retinal deprivation (NRD) group. HFD was induced with half-lateral translucent plastic goggles in the right eye; the left eye was kept untreated. Swept-source optical coherence tomography (SS-OCT) images obtained at 0, 3, and 72 hours (h) were analyzed using customized software. After 72 h of TRD, the retinal thickness (RT) of the treated eyes was significantly less than that of the fellow eyes in the temporal (P = 0.034) rather than the nasal (P = 0.083) region. In the NRD group, the RT of the treated eyes was thinner in both the nasal and temporal regions than that of the fellow eyes (P < 0.01). The RT alterations were more pronounced in the temporal (Δ = -16.86 ± 7.14 µm) than in the nasal (Δ = -13.44 ± 4.83 µm) region after 72-h TRD (P = 0.036), whereas the opposite was observed in the NRD group (P = 0.008). The choroidal thickness (ChT) of the treated eyes was less in both the nasal and temporal regions than that of the fellow eyes in both groups after 72-h treatment (P < 0.01). The ChT alterations were more pronounced in the temporal (Δ = -2.48 ± 8.95 µm) than in the nasal (Δ = 23.65 ± 13.58 µm) region after 72-h TRD (P = 0.021), whereas the NRD group showed the opposite effect (P = 0.019). HFD in chicks can lead to retinal and choroidal thinning in the corresponding regions.


Assuntos
Corioide , Retina , Animais , Galinhas , Tomografia de Coerência Óptica/métodos
7.
Int J Med Sci ; 21(5): 826-836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617014

RESUMO

Respiratory infectious diseases have long been recognised as a substantial global healthcare burden and are one of the leading causes of death worldwide, particularly in vulnerable individuals. In the post COVID-19 era, there has been a surge in the prevalence of influenza virus A and other multiple known viruses causing cold compared with during the same period in the previous three years, which coincided with countries easing COVID-19 restrictions worldwide. This article aims to review community-acquired respiratory illnesses covering a broad spectrum of viruses, bacteria, and atypical microorganisms and focuses on the cluster prevalence of multiple known respiratory pathogens in China, thereby providing effective prevention and control measures.


Assuntos
COVID-19 , Infecções Respiratórias , Humanos , Infecções Respiratórias/epidemiologia , COVID-19/epidemiologia , China
8.
Proc Natl Acad Sci U S A ; 118(23)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088844

RESUMO

The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate's side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.

9.
Small ; 19(49): e2302939, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496086

RESUMO

Microbubble generation and manipulation play critical roles in diverse applications such as microfluidic mixing, pumping, and microrobot propulsion. However, existing methods are typically limited to lateral movements on customized substrates or rely on specific liquids with particular properties or designed concentration gradients, thereby hindering their practical applications. To address this challenge, this paper presents a method that enables robust vertical manipulation of microbubbles. By focusing a resonant laser on hydrophilic silica-coated gold nanoparticle arrays immersed in water, plasmonic microbubbles are generated and detach from the substrates immediately upon cessation of laser irradiation. Using simple laser pulse control, it can achieve an adjustable size and frequency of bubble bouncing, which is governed by the movement of the three-phase contact line during surface wetting. Furthermore, it demonstrates that rising bubbles can be pulled back by laser irradiation induced thermal Marangoni flow, which is verified by particle image velocimetry measurements and numerical simulations. This study provides novel insights into flexible bubble manipulation and integration in microfluidics, with significant implications for various applications including mixing, drug delivery, and the development of soft actuators.

10.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33406224

RESUMO

Protein-nucleic acid interactions play essential roles in many biological processes, such as transcription, replication and translation. In protein-nucleic acid interfaces, hotspot residues contribute the majority of binding affinity toward molecular recognition. Hotspot residues are commonly regarded as potential binding sites for compound molecules in drug design projects. The dynamic property is a considerable factor that affects the binding of ligands. Computational approaches have been developed to expedite the prediction of hotspot residues on protein-nucleic acid interfaces. However, existing approaches overlook hotspot dynamics, despite their essential role in protein function. Here, we report a web server named Hotspots In silico Scanning on Nucleic Acid and Protein Interface (HISNAPI) to analyze hotspot residue dynamics by integrating molecular dynamics simulation and one-step free energy perturbation. HISNAPI is capable of not only predicting the hotspot residues in protein-nucleic acid interfaces but also providing insights into their intensity and correlation of dynamic motion. Protein dynamics have been recognized as a vital factor that has an effect on the interaction specificity and affinity of the binding partners. We applied HISNAPI to the case of SARS-CoV-2 RNA-dependent RNA polymerase, a vital target of the antiviral drug for the treatment of coronavirus disease 2019. We identified the hotspot residues and characterized their dynamic behaviors, which might provide insight into the target site for antiviral drug design. The web server is freely available via a user-friendly web interface at http://chemyang.ccnu.edu.cn/ccb/server/HISNAPI/ and http://agroda.gzu.edu.cn:9999/ccb/server/HISNAPI/.


Assuntos
Biologia Computacional/métodos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Biologia Computacional/instrumentação , Internet , Ligação Proteica , Interface Usuário-Computador
11.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32666116

RESUMO

A clear systematic delineation of the interactions between phosphorylation sites on substrates and their effector kinases plays a fundamental role in revealing cellular activities, understanding signaling modulation mechanisms and proposing novel hypotheses. The emergence of bioinformatics tools contributes to studying phosphorylation network. Some of them feature the visualization of network, enabling more effective trace of the underlying biological problems in a clear and succinct way. In this review, we aimed to provide a toolbox for exploring phosphorylation network. We first systematically surveyed 19 tools that are available for exploring phosphorylation networks, and subsequently comparatively analyzed and summarized these tools to guide tool selection in terms of functionality, data sources, performance, network visualization and implementation, and finally briefly discussed the application cases of these tools. In different scenarios, the conclusion on the suitability of a tool for a specific user may vary. Nevertheless, easily accessible bioinformatics tools are proved to facilitate biological findings. Hopefully, this work might also assist non-specialists, students, as well as computational scientists who aim at developing novel tools in the field of phosphorylation modification.


Assuntos
Biologia Computacional , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Software , Animais , Humanos , Fosforilação
12.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33140820

RESUMO

Effective drug discovery contributes to the treatment of numerous diseases but is limited by high costs and long cycles. The Quantitative Structure-Activity Relationship (QSAR) method was introduced to evaluate the activity of a large number of compounds virtually, reducing the time and labor costs required for chemical synthesis and experimental determination. Hence, this method increases the efficiency of drug discovery. To meet the needs of researchers to utilize this technology, numerous QSAR-related web servers, such as Web-4D-QSAR and DPubChem, have been developed in recent years. However, none of the servers mentioned above can perform a complete QSAR modeling and supply activity prediction functions. We introduce Cloud 3D-QSAR by integrating the functions of molecular structure generation, alignment, molecular interaction field (MIF) computing and results analysis to provide a one-stop solution. We rigidly validated this server, and the activity prediction correlation was R2 = 0.934 in 834 test molecules. The sensitivity, specificity and accuracy were 86.9%, 94.5% and 91.5%, respectively, with AUC = 0.981, AUCPR = 0.971. The Cloud 3D-QSAR server may facilitate the development of good QSAR models in drug discovery. Our server is free and now available at http://chemyang.ccnu.edu.cn/ccb/server/cloud3dQSAR/ and http://agroda.gzu.edu.cn:9999/ccb/server/cloud3dQSAR/.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Internet , Software , Relação Quantitativa Estrutura-Atividade
13.
J Transl Med ; 21(1): 785, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932794

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play a key role in the occurrence and progression of myopia. However, the function of lncRNAs in retinal ganglion cells (RGCs) in the pathogenesis of myopia is still unknown. The aim of our study was to explore the lncRNA-mediated competing endogenous RNA (ceRNA) network in RGCs during the development of myopia. METHODS: RNA sequencing was performed to analyze lncRNA and mRNA expression profiles in RGCs between guinea pigs with form-deprived myopia (FDM) and normal control guinea pigs, and related ceRNA networks were constructed. Then, potentially important genes in ceRNA networks were verified by qRT‒PCR, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore biological functions in the RGCs of FDM guinea pigs. The important genes and related signaling pathways were further verified by qRT‒PCR, immunohistochemistry, immunofluorescence and Western blot in myopia in FDM guinea pigs, FDM mice, and highly myopic adults. RESULTS: The distribution of RGCs was uneven, the number of RGCs was decreased, and RGC apoptosis was increased in FDM guinea pigs. In total, 873 lncRNAs and 2480 mRNAs were determined to be differentially expressed genes in RGCs from normal control and FDM guinea pigs. Via lncRNA-mediated ceRNA network construction and PCR verification, we found that lncRNA-XR_002792574.1 may be involved in the development of myopia through the miR-760-3p/Adcy1 pathway in RGCs. Further verification in FDM guinea pigs, FDM mice, and highly myopic adults demonstrated that the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis in RGCs might be related to cGMP/PKG, the apelin signaling pathway and scleral remodeling. CONCLUSION: We demonstrated that the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis in RGCs might be related to myopia. On the one hand, the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis might inhibit the cGMP/PKG and apelin signaling pathways in RGCs, thereby causing RGC damage in myopia. On the other hand, the lncRNA-XR_002792574.1/miR-760-3p/Adcy1 axis may cause myopic scleral remodeling through the ERK-MMP-2 pathway. These findings may reveal novel potential targets in myopia and provide reference value for exploration and development of gene editing therapeutics for hereditary myopia.


Assuntos
MicroRNAs , Miopia , RNA Longo não Codificante , Camundongos , Animais , Cobaias , MicroRNAs/genética , RNA Longo não Codificante/genética , Apelina , Células Ganglionares da Retina , Redes Reguladoras de Genes , Biomarcadores
14.
J Transl Med ; 21(1): 40, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681849

RESUMO

BACKGROUND: Current diagnosis tools for prostate cancer (PCa) such as serum PSA detection and prostate biopsy cannot distinguish dormant tumors from invasive malignancies, either be used as prognosis marker for castration resistant prostate cancer (CRPC), the lethal stage of PCa patients. Exosomes have been widely investigated as promising biomarkers for various diseases. We aim to characterize the proteomic and metabolomic profile of exosomes and to evaluate their potential value for the diagnosis of PCa, especially CRPC. We also investigate the functions of some specific exosome biomarkers in the progression of CRPC. METHODS: Integrated proteomics and metabolomics analysis were performed for plasma-derived exosomes collected from tumor-free controls (TFC), PCa and CRPC patients. Expression of specific exosomal proteins were further validated by targeted 4D-parallel reaction monitoring (PRM) mass spectrometry among the three cohorts. Tissue distribution and functional role of exosomal protein LRG1 was studied in clinical PCa tissue samples and cell line models. RESULTS: Three potential exosomal protein markers were identified. The apolipoprotein E level in PCa samples was 1.7-fold higher than that in TFC (receiver operating characteristic value, 0.74). Similarly, the levels of exosome-derived leucine-rich alpha2-glycoprotein 1 (LRG1) and inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) in the CRPC group were 1.7 and 2.04 times, respectively, higher than those in the PCa group (ROC values, 0.84 and 0.85, respectively), indicating that LRG1 and ITIH3 could serve as predictive markers for CRPC. For metabolomic evaluation of exosomes, a series of differentially expressed metabolites were identified, and a combined metabolite panel showed ROC value of 0.94 for distinguishing PCa from TFC and 0.97 for distinguishing CRPC from PCa. Immunohistochemistry of tissue microarray showed that LRG1 protein was significantly upregulated in advanced prostate cancer and functional assay revealed that ectopic expression of LRG1 can significantly enhance the malignant phenotype of prostate cancer cells. More importantly, PCa cell derived LRG1-overexpressed exosomes remarkably promoted angiogenesis. CONCLUSION: Integration of proteomics and metabolomics data generated proteomic and metabolic signatures of plasma exosomes that may facilitate discrimination of CRPC from PCa and TFC patients, suggesting the potential of exosomal proteins and metabolites as CRPC markers. The study also confirmed the important role of exosomal protein LRG1 in PCa malignant progression.


Assuntos
Exossomos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteômica , Próstata/metabolismo , Exossomos/metabolismo
15.
J Med Virol ; 95(7): e28895, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403902

RESUMO

Omicron generally causes milder disease than previous strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially in fully vaccinated individuals. However, incompletely vaccinated children may develop Omicron-related complications such as those affecting the central nervous system. To characterize the spectrum of clinical manifestations of neuro-COVID and to identify potential biomarkers associated with clinical outcomes, we recruited 15 children hospitalized for Omicron-related neurological manifestations in three hospitals in Hong Kong (9 boys and 6 girls aged 1-13 years). All were unvaccinated or incompletely vaccinated. Fourteen (93.3%) were admitted for convulsion, including benign febrile seizure (n = 7), complex febrile seizure (n = 2), seizure with fever (n = 3), and recurrent breakthrough seizure (n = 2), and the remaining nonconvulsive patient developed encephalopathic state with impaired consciousness. None of the seven children with benign febrile seizure and six of eight children with other neurological manifestations had residual deficits at 9-month follow-up. SARS-CoV-2 RNA was undetectable in the cerebrospinal fluid (CSF) specimens of seven patients who underwent lumbar puncture. Spike-and-wave/sharp waves affecting the frontal lobes were detected in four of seven (57.1%) patients who underwent electroencephalogram. Children with Omicron-related neurological manifestations had significantly higher blood levels of IL-6 (p < 0.001) and CHI3L1 (p = 0.022) than healthy controls, and higher CSF levels of IL-6 (p = 0.002) than children with non-COVID-19-related febrile illnesses. Higher CSF-to-blood ratios of IL-8 and CHI3L1 were associated with longer length of stay, whereas higher ratios of IL-6 and IL-8 were associated with higher blood tau level. The role of CSF:blood ratio of IL-6, IL-8, and CHI3L1 as prognostic markers for neuro-COVID should be further evaluated.


Assuntos
COVID-19 , Convulsões Febris , Masculino , Feminino , Humanos , Criança , COVID-19/complicações , SARS-CoV-2 , Convulsões Febris/etiologia , Interleucina-6 , Interleucina-8 , RNA Viral , Convulsões/etiologia
16.
Opt Express ; 31(19): 30894-30910, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710622

RESUMO

We propose a scheme for imaging periodic surfaces using a superlens. By employing an inverse scattering model and the transformed field expansion method, we derive an approximate reconstruction formula for the surface profile, assuming small amplitude. This formula suggests that unlimited resolution can be achieved for the linearized inverse problem with perfectly matched parameters. Our method requires only a single incident wave at a fixed frequency and can be efficiently implemented using fast Fourier transform. Through numerical experiments, we demonstrate that our method achieves resolution significantly surpassing the resolution limit for both smooth and non-smooth surface profiles with either perfect or marginally imperfect parameters.

17.
Exp Eye Res ; 233: 109564, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419380

RESUMO

Choroid has been claimed to be of importance during ocular development. However, how the choroid responds spatially to different visual cues has not been fully understood. The aim of this study was to investigate defocus-induced spatial changes in choroidal thickness (ChT) in chicks. Eight 10-day-old chicks were fitted monocularly with -10 D or +10 D lenses (day 0), which were removed seven days later (day 7). The ChT was measured on days 0, 7, 14, and 21 using wide-field swept-source optical coherence tomography (SS-OCT) and analyzed with custom-made software. Comparisons of the ChT in the central (1 mm), paracentral (1-3 mm), and peripheral (3-6 mm) ring areas and the ChT in the superior, inferior, nasal, and temporal regions were conducted. Axial lengths and refractions were also evaluated. In the negative lens group, the global ChT of the treated eyes was significantly less than that of the fellow eyes on day 7 (interocular difference: 179.28 ± 25.94 µm, P = 0.001), but thicker on day 21 (interocular difference: 241.80 ± 57.13 µm, P = 0.024). These changes were more pronounced in the central choroid. The superior-temporal choroid changed more during induction but less during recovery. In the positive lens group, the ChT of both eyes increased on day 7 and decreased on day 21, with most changes occurring in the central region, too. The inferior-nasal choroid of the treated eyes changed more during induction but less during recovery. These results provide evidence for regionally asymmetric characteristics of the choroidal response to visual cues and insights into the underlying mechanisms of emmetropization.


Assuntos
Cristalino , Miopia , Animais , Tomografia de Coerência Óptica/métodos , Corioide , Galinhas
18.
World J Urol ; 41(11): 3129-3134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750958

RESUMO

INTRODUCTION: 7.5F digital fURS and 9.5/11.5F ureteral access sheaths (UAS), both conventional (cUAS) and vacuum-assisted (vaUAS), are commercially available. Irrigation increases intrarenal pressure (IRP). This study analyzes the IRP with various irrigation rates using 7.5F fURS without UAS or with either cUAS or vaUAS in an ex-vivo porcine model. Pyelo-tubular backflow was also studied during these experiments. MATERIALS AND METHODS: 11 porcine kidneys were used. 7.5F digital fURS was tested without UAS and with 9.5/11.5F cUAS and vaUAS. 6F pressure monitor catheters were placed into the upper and lower calyces. IRPs were recorded under different irrigation rates. When vaUAS was used, the air vent was either open or closed. 300 mmHg aspiration pressure was chosen. Lastly, contrasted irrigation fluid was delivered until IRP reached above 30 mmHg. Fluoroscopy images were obtained at 5 mmHg intervals over this threshold to study the pyelo-tubular backflow. RESULTS: Using cUAS, IRP reached 30 mmHg with irrigation rates between 60 and 70 cc/min. Using vaUAS with vent closed, IRP never exceeded 10 mmHg with irrigation up to 120 cc/min. vaUAS with vent open performed marginally better than cUAS. fURS without UAS performed better than cUAS. Pyelo-tubular backflow became prominent at 40 mmHg. CONCLUSION: In an ex-vivo porcine model, 7.5F fURS could be used safely without UAS with irrigation rates up to 120 cc/min. The safety margin dropped to 60-70 cc/min with cUAS. vaUAS with vent closed maintained IRP < 10 mmHg with irrigation rates up to 120 cc/min. Pyelo-tubular backflow was observed with IRP > 35 mmHg.


Assuntos
Cálculos Renais , Ureter , Suínos , Animais , Ureteroscópios , Ureteroscopia/métodos , Pressão , Irrigação Terapêutica/métodos , Rim
19.
Dev Med Child Neurol ; 65(3): 358-366, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36106586

RESUMO

AIM: To investigate the association between the risk of attention-deficit/hyperactivity disorder (ADHD) and preterm birth and determine how postnatal complications in children born preterm is associated with the risk of ADHD. METHOD: This population-based cohort study used data from the Hong Kong electronic medical records. We followed 359 614 children (48% female; 6-17 years old, mean 11 years 7 months, SD 3 years 2 months) born in public hospitals in Hong Kong from 1st January 2004 to 31st December 2014 and collected medical records and demographic details for mothers and children until 11th November 2020. RESULTS: The risk of ADHD was 4.0% in children born at term and 5.1% in children born preterm. The odds ratio for ADHD was 2.08 (95% confidence interval [CI] 1.64-2.64) for children born extremely preterm, 1.64 (95% CI 1.46-1.85) for children born very preterm, and 1.15 (95% CI 1.08-1.23) for children born late preterm. Among preterm postnatal complications, only early respiratory disease, retinopathy of prematurity (ROP), and intraventricular haemorrhage were significant predictors of ADHD after controlling for preterm birth, other risk factors, and sociodemographic variables. The excess risk of ADHD among children born very preterm or late preterm could be partly explained by respiratory disease. ROP partially mediated the risk of ADHD in children born very preterm. INTERPRETATION: Children born preterm in all subcategories, from extremely preterm to late preterm, have increased risk of ADHD. Early respiratory infection partially mediates the risk of ADHD in children born preterm.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Nascimento Prematuro , Criança , Humanos , Recém-Nascido , Feminino , Adolescente , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Estudos de Coortes , Nascimento Prematuro/epidemiologia , Mães
20.
Int J Med Sci ; 20(1): 151-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619228

RESUMO

The SARS-CoV-2 Omicron is currently the predominant circulating variant in the COVID-19 pandemic. The dominating Omicron sublineages respond to host immune pressure and develop advantageous mutations or genetic recombination, which result in variants that are more contagious or better at escaping immune responses in response to previous infection or vaccination. Meanwhile, multiple genetic recombination events have been reported in coinfection cases, the majority of which have resulted from the recombination between co-circulating Omicron BA.1 (or BA.1.1) and Delta variant or BA.2. Here, we review the knowledge and characterization of recombination for SARS-CoV-2 at the population level, provide an update on the occurrence of newly circulating Omicron sublineages, and discuss the effectiveness of novel vaccines/therapeutic drugs against the Omicron variant.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA