Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022845

RESUMO

Esophageal spindle-cell squamous cell carcinoma (ESS) is a rare biphasic neoplasm composed of a carcinomatous component (CaC) and a sarcomatous component (SaC). However, the genomic origin and gene signature of ESS remain unclear. Using whole-exome sequencing of laser-capture microdissection (LCM) tumor samples, we determined that CaC and SaC showed high mutational commonality, with the same top high-frequency mutant genes, mutation signatures, and tumor mutation burden; paired samples shared a median of 25.5% mutation sites. Focal gains were found on chromosomes 3q29, 5p15.33, and 11q13.3. Altered genes were mainly enriched in the RTK-RAS signaling pathway. Phylogenetic trees showed a monoclonal origin of ESS. The most frequently mutated oncogene in the trunk was TP53, followed by NFE2L2, KMT2D, and MUC16. Prognostic associations were found for CDC27, LRP2, APC, and SNAPC4. Our data highlight the monoclonal origin of ESS with TP53 as a potent driver oncogene, suggesting new targeted therapies and immunotherapies as treatment options. © 2024 The Pathological Society of Great Britain and Ireland.

2.
Plant Cell Environ ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041727

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential precursors for plant membrane lipids, cuticular waxes, suberin, and storage oils. Integral to the fatty acid elongase (FAE) complex, 3-ketoacyl-CoA synthases (KCSs) function as crucial enzymes in the VLCFA pathway, determining the chain length of VLCFA. This study explores the in-planta role of the KCS19 gene. KCS19 is predominantly expressed in leaves and stem epidermis, sepals, styles, early silique walls, beaks, pedicels, and mature embryos. Localized in the endoplasmic reticulum, KCS19 interacts with other FAE proteins. kcs19 knockout mutants displayed reduced total wax and wax crystals, particularly alkanes, while KCS19 overexpression increased these components and wax crystals. Moreover, the cuticle permeability was higher for the kcs19 mutants compared to the wild type, rendering them more susceptible to drought and salt stress, whereas KCS19 overexpression enhanced drought and salt tolerance. Disrupting KCS19 increased C18 species and decreased C20 and longer species in seed fatty acids, indicating its role in elongating C18 to C20 VLCFAs, potentially up to C24 for seed storage lipids. Collectively, KCS19-mediated VLCFA synthesis is required for cuticular wax biosynthesis and seed storage lipids, impacting plant responses to abiotic stress.

3.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037290

RESUMO

The phenomenon of methane oxidation linked to perchlorate reduction has been reported in multiple studies; yet, the underlying microbial mechanisms remain unclear. Here, we enriched suspended cultures by performing methane-driven perchlorate reduction under oxygen-limiting conditions in a membrane bioreactor (MBR). Batch test results proved that perchlorate reduction was coupled to methane oxidation, in which acetate was predicted as the potential intermediate and oxygen played an essential role in activating methane. By combining DNA-based stable isotope probing incubation and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA, pcrA, and narG), we found that synergistic interactions between aerobic methanotrophs (Methylococcus and Methylocystis) and perchlorate-reducing bacteria (PRB; Denitratisoma and Dechloromonas) played active roles in mediating methane-driven perchlorate reduction. This partnership was further demonstrated by coculture experiments in which the aerobic methanotroph could produce acetate to support PRB to complete perchlorate reduction. Our findings advance the understanding of the methane-driven perchlorate reduction process and have implications for similar microbial consortia linking methane and chlorine biogeochemical cycles in natural environments.

4.
Phytother Res ; 38(5): 2128-2153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400575

RESUMO

Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.


Assuntos
Produtos Biológicos , Fibrinolíticos , Trombose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Trombose/tratamento farmacológico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Animais , Ativação Plaquetária/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
J Microencapsul ; 41(4): 296-311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709162

RESUMO

AIMS: To construct the microemulsion delivery system (ME) loading ATSO and NA and study their physicochemical characteristics to enhance their stability and water solubility. METHODS: By plotting ternary phase diagrams, the composition and proportions of the MEs were determined. The physicochemical characteristics and stability of MEs were evaluated by mean diameter, polydispersity index (PDI), pH, electrical conductivity, transmission electron microscopy (TEM), rheological behaviour measurement, and phase inversion temperature (PIT). RESULTS: The MEs was composed with EL-40 as a surfactant and specifically with the addition of ethanol as a cosurfactant in NA-loaded ME. The mean diameters of ATSO-loaded ME and NA-loaded ME were 39.65 ± 0.24 nm and 32.90 ± 2.65 nm, and PDI were 0.49 ± 0.01 and 0.28 ± 0.14, respectively. The TEM confirmed the spherical and smooth morphology of MEs. The rheological results indicated that MEs are dilatant fluids with the advantages of low viscosity, high fluidity, and tolerance to temperature fluctuations. The mean diameter and PDI of MEs showed no significant change after storage at 25 °C for 28 days and centrifugation. CONCLUSION: The prepared microemulsions could expand the application prospects of ATSO and NA products in cosmetics, medicine, foods and other fields.


Assuntos
Emulsões , Óleos de Plantas , Reologia , Emulsões/química , Óleos de Plantas/química , Acer/química , Ácidos Graxos/química , Sementes/química , Tensoativos/química , Estabilidade de Medicamentos , Viscosidade
6.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792216

RESUMO

Fullerene-based amphiphiles are new types of monomers that form self-assemblies with profound applications. The conical fullerene amphiphiles (CFAs) have attracted attention for their uniquely self-assembled structures and have opened up a new field for amphiphile research. The CFAs and CFAs with different substances embedded in cavities are designed and their self-assembly behaviors are investigated using molecular dynamics (MD) simulations. The surface and internal structures of the micelles are analyzed from various perspectives, including micelle size, shape, and solvent-accessible surface area (SASA). The systems studied are all oblate micelles. In comparison, embedding Cl- or embedding Na+ in the cavities results in larger micelles and a larger deviation from the spherical shape. Two typical configurations of fullerene surfactant micelles, quadrilateral plane and tetrahedral structure, are presented. The dipole moments of the fullerene molecules are also calculated, and the results show that the embedded negatively charged Cl- leads to a decrease in the polarity of the pure fullerene molecules, while the embedded positively charged Na+ leads to an increase.

7.
Environ Sci Technol ; 57(51): 21715-21726, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079577

RESUMO

Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA and narG). We confirmed that the methane-supported selenate reduction process was accomplished by a microbial consortia consisting of type-II aerobic methanotrophs and several heterotrophic selenate reducers. The mass balance and validation tests on possible intermediates suggested that methane was partially oxidized into acetate under oxygen-limiting conditions, which was consumed as a carbon source for selenate-reducing bacteria. High-throughput 16S rRNA gene sequencing, DNA-SIP incubation with 13CH4, and subsequent functional gene (pmoA and narG) sequencing results collectively proved that Methylocystis actively executed partial methane oxidation and Acidovorax and Denitratisoma were dominant selenate-reducing bacteria, thus forming a syntrophic partnership to drive selenate reduction. The findings not only advance our understanding of methane oxidation coupled to selenate reduction under oxygen-limiting conditions but also offer useful information on developing methane-based biotechnology for bioremediation of selenate-contaminated water.


Assuntos
Bactérias , Metano , Ácido Selênico/metabolismo , RNA Ribossômico 16S/genética , Bactérias/genética , Oxirredução , Isótopos/metabolismo , Reatores Biológicos , Oxigênio , Água
8.
Metab Brain Dis ; 38(6): 2065-2075, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37148433

RESUMO

Neuroinflammation contributes to the pathogenesis of depression. Inulin-type oligosaccharides of Morinda officinalis (IOMO) exert antidepressant-like effects in rodents and patients with depression, while the underlying mechanisms remain unclear. This study used chronic restraint stress (CRS) and lipopolysaccharide (LPS) to induce depression-like behaviors in mice. Western blotting and ELISA analysis were used to investigate the effects of IOMO on inflammatory cytokine levels. Immunofluorescence analysis was used to investigate the effects of IOMO on hippocampal NLRP3 inflammasome and microglial cells. The results suggested that 6 weeks of CRS induced significant depression-like behaviors based on the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST), which were accompanied by increases in the expression of IL-6 and the activation of hippocampal microglial cells. Chronic treatment with IOMO (25 mg/kg, i.g.) for 28 days significantly reversed these depression-like behaviors and inhibited the activation of microglial cells. Furthermore, LPS (0.5 mg/kg, i.p.) also significantly induced depression-like behaviors in the TST, FST, and novelty-suppressed feeding test (NSFT), as well as increased the expression of IL-1ß and caspase-1, and activated the microglial cells and the NLRP3 inflammasome in the hippocampus. Treatment with IOMO for 9 days significantly reversed these depression-like behaviors and normalized the LPS-induced activation of the microglial cells and NLRP3 inflammasome. Taken together, these results suggested that IOMO exerted antidepressant-like effects via hippocampal microglial NLRP3 inflammasome mediation followed by caspase-1 inhibition and the production of IL-1ß. These findings provide a basis for developing new antidepressants targeting the microglial NLRP3 inflammasome.


Assuntos
Inflamassomos , Morinda , Camundongos , Animais , Inflamassomos/metabolismo , Inulina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Morinda/metabolismo , Lipopolissacarídeos/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Microglia/metabolismo , Hipocampo/metabolismo , Oligossacarídeos/farmacologia , Inflamação/metabolismo , Caspases/metabolismo , Depressão/induzido quimicamente , Estresse Psicológico/complicações
9.
Biotechnol Lett ; 45(10): 1355-1364, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37486554

RESUMO

PURPOSE: In our previous study, we constructed a one-pot multi-enzyme system for rare ketoses synthesis based on L-rhamnulose-1-phosphate aldolase (RhaD) from accessible glycerol in vitro. To eliminate tedious purification of enzymes, a facile Escherichia coli whole-cell cascade platform was established in this study. METHODS: To enhance the conversion rate, the reaction conditions, substrate concentrations and expressions of related enzymes were extensively optimized. RESULTS: The biosynthetic route for the cascade synthesis of rare ketoses in whole cells was successfully constructed and three rare ketoses including D-allulose, D-sorbose and L-fructose were produced using glycerol and D/L-glyceraldehyde (GA). Under optimized conditions, the conversion rates of rare ketoses were 85.0% and 93.0% using D-GA and L-GA as the receptor, respectively. Furthermore, alditol oxidase (AldO) was introduced to the whole-cell system to generate D-GA from glycerol, and the total production yield of D-sorbose and D-allulose was 8.2 g l-1 only from the sole carbon source glycerol. CONCLUSION: This study demonstrates a feasible and cost-efficient method for rare sugars synthesis and can also be applied to the green synthesis of other value-added chemicals from glycerol.


Assuntos
Cetoses , Sorbose , Sorbose/química , Glicerol/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo
10.
Aging Ment Health ; 27(2): 357-371, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35315703

RESUMO

OBJECTIVES: The International Classification of Functioning, Disability and Health (ICF) endorsed by the World Health Organization provides a conceptual framework for describing functioning and disability based on a biopsychosocial model. Although dementia is one of the leading causes of disability, yet little is known on the extent to how the ICF has been utilized in dementia research and practice. The study aimed to examine and map the current applications of the ICF with dementia from a body of earlier studies and to explore the potential use in person-centred dementia care. METHODS: The Arksey and O'Malley framework was used to guide the searching, selecting, and synthesizing process. The scoping review was reported following The Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Review (PRISMA-ScR) guidelines. RESULTS: A total of 34 studies were included. The applications of ICF were classified into 4 themes: (1) in clinical practice and the education of health professionals (n = 20); (2) community support services and income support (n = 3); (3) population-based, census, or survey data (n = 10); (4) advocacy and empowerment purposes (n = 1). CONCLUSION: The ICF has made a major impact on dementia in clinical settings. Findings strongly support applying the ICF to person-centered dementia care. In the future, more empirical studies are needed to expand the scope of ICF use in dementia research and practice.


Assuntos
Demência , Pessoas com Deficiência , Humanos , Demência/terapia , Avaliação da Deficiência , Pessoal de Saúde , Classificação Internacional de Funcionalidade, Incapacidade e Saúde , Organização Mundial da Saúde
11.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569852

RESUMO

Constant efforts are being made to develop methods for improving cancer immunotherapy, including cytokine-induced killer (CIK) cell therapy. Numerous heat shock protein (HSP) 90 inhibitors have been assessed for antitumor efficacy in preclinical and clinical trials, highlighting their individual prospects for targeted cancer therapy. Therefore, we tested the compatibility of CIK cells with HSP90 inhibitors using Burkitt's lymphoma (BL) cells. Our analysis revealed that CIK cytotoxicity in BL cells was augmented in combination with independent HSP90 inhibitors 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) and ganetespib. Interestingly, CIK cell cytotoxicity did not diminish after blocking with NKG2D (natural killer group 2, member D), which is a prerequisite for their activation. Subsequent analyses revealed that the increased expression of Fas on the surface of BL cells, which induces caspase 3/7-dependent apoptosis, may account for this effect. Thus, we provide evidence that CIK cells, either alone or in combination with HSP90 inhibitors, target BL cells via the Fas-FasL axis rather than the NKG2D pathway. In the context of clinical relevance, we also found that high expression of HSP90 family genes (HSP90AA1, HSP90AB1, and HSP90B1) was significantly associated with the reduced overall survival of BL patients. In addition to HSP90, genes belonging to the Hsp40, Hsp70, and Hsp110 families have also been found to be clinically significant for BL survival. Taken together, the combinatorial therapy of CIK cells with HSP90 inhibitors has the potential to provide clinical benefits to patients with BL.


Assuntos
Antineoplásicos , Linfoma de Burkitt , Células Matadoras Induzidas por Citocinas , Humanos , Linfoma de Burkitt/tratamento farmacológico , Células Matadoras Induzidas por Citocinas/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Antineoplásicos/farmacologia , Proteínas de Choque Térmico/uso terapêutico , Linhagem Celular Tumoral
12.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901718

RESUMO

Very-long-chain alkane plays an important role as an aliphatic barrier. We previously reported that BnCER1-2 was responsible for alkane biosynthesis in Brassica napus and improved plant tolerance to drought. However, how the expression of BnCER1-2 is regulated is still unknown. Through yeast one-hybrid screening, we identified a transcriptional regulator of BnCER1-2, BnaC9.DEWAX1, which encodes AP2\ERF transcription factor. BnaC9.DEWAX1 targets the nucleus and displays transcriptional repression activity. Electrophoretic mobility shift and transient transcriptional assays suggested that BnaC9.DEWAX1 repressed the transcription of BnCER1-2 by directly interacting with its promoter. BnaC9.DEWAX1 was expressed predominantly in leaves and siliques, which was similar to the expression pattern of BnCER1-2. Hormone and major abiotic stresses such as drought and high salinity affected the expression of BnaC9.DEWAX1. Ectopic expression of BnaC9.DEWAX1 in Arabidopsis plants down-regulated CER1 transcription levels and resulted in a reduction in alkanes and total wax loads in leaves and stems when compared with the wild type, whereas the wax depositions in the dewax mutant returned to the wild type level after complementation of BnaC9.DEWAX1 in the mutant. Moreover, both altered cuticular wax composition and structure contribute to increased epidermal permeability in BnaC9.DEWAX1 overexpression lines. Collectively, these results support the notion that BnaC9.DEWAX1 negatively regulates wax biosynthesis by binding directly to the BnCER1-2 promoter, which provides insights into the regulatory mechanism of wax biosynthesis in B. napus.


Assuntos
Brassica napus , Proteínas de Plantas , Alcanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica napus/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Ceras/metabolismo
13.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687215

RESUMO

Glycosylation is an important post-translational modification of proteins, contributing to protein function, stability and subcellular localization. Fungal immunomodulatory proteins (FIPs) are a group of small proteins with notable immunomodulatory activity, some of which are glycoproteins. In this study, the impact of glycosylation on the bioactivity and biochemical characteristics of FIP-nha (from Nectria haematococca) is described. Three rFIP-nha glycan mutants (N5A, N39A, N5+39A) were constructed and expressed in Pichia pastoris to study the functionality of the specific N-glycosylation on amino acid N5 and N39. Their protein characteristics, structure, stability and activity were tested. WT and mutants all formed tetramers, with no obvious difference in crystal structures. Their melting temperatures were 82.2 °C (WT), 81.4 °C (N5A), 80.7 °C (N39A) and 80.1 °C (N5+39A), indicating that glycosylation improves thermostability of rFIP-nha. Digestion assays showed that glycosylation on either site improved pepsin resistance, while 39N-glycosylation was important for trypsin resistance. Based on the 3D structure and analysis of enzyme cleavage sites, we conclude that glycosylation might interfere with hydrolysis via increasing steric hindrance. WT and mutants exerted similar bioactivity on tumor cell metabolism and red blood cells hemagglutination. Taken together, these findings indicate that glycosylation of FIP-nha impacts its thermostability and digestion resistance.


Assuntos
Fusarium , Peptídeo Hidrolases , Glicosilação , Proteólise , Proteínas Fúngicas/genética
14.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5315-5325, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114121

RESUMO

This study aims to investigate the effects and the molecular mechanism of Huangdi Anxiao Capsules(HDAX)-containing serum in protecting the rat adrenal pheochromocytoma(PC12) cells from diabetes-associated cognitive dysfunction induced by high glucose and whether the mechanism is related to the regulation of NOD-like receptor thermal protein domain associated protein 3(NLRP3)-mediated pyroptosis. The PC12 cell model of diabetes-associated cognitive dysfunction induced by high glucose was established and mcc950 was used to inhibit NLRP3. PC12 cells were randomized into control, model, HDAX-containing serum, mcc950, and HDAX-containing serum+mcc950 groups. Methyl thiazolyl tetrazolium(MTT) assay was employed to determine the viability, and Hoechst 33258/PI staining to detect pyroptosis of PC12 cells. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1 beta(IL-1ß) and IL-18. Western blot was employed to determine the protein levels of postsynaptic density protein 95(PSD-95), NLRP3, apoptosis-associated speck-like protein containing a CARD(ASC), gasdermin D(GSDMD), GSDMD-N, and cleaved cysteinyl aspartate specific proteinase-1(caspase-1), and RT-PCR to determine the mRNA levels of NLRP3, ASC, GSDMD, and caspase-1. The immunofluorescence assay was adopted to measure the levels and distribution of NLRP3 and GSDMD-N in PC12 cells. Compared with the control group, the model group showed decreased cell proliferation, increased PI positive rate, down-regulated protein level of PSD-95, up-regulated protein levels of NLRP3, ASC, GSDMD-N, GSDMD, and cleaved caspase-1, up-regulated mRNA levels of NLRP3, ASC, GSDMD, and caspase-1, and elevated levels of IL-1ß and IL-18. Compared with the model group, HDAX-containing serum, mcc950, and the combination of them improved cell survival rate and morphology, decreased the PI positive rate, down-regulated the protein levels of NLRP3, ASC, GSDMD-N, GSDMD, and cleaved caspase-1 and the mRNA levels of NLRP3, ASC, GSDMD, and caspase-1, and promoted the secretion of IL-1ß and IL-18. The findings demonstrated that HDAX-containing serum can inhibit the pyroptosis-mediated by NLRP3 and protect PC12 cells from the cognitive dysfunction induced by high glucose.


Assuntos
Diabetes Mellitus , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Piroptose/fisiologia , Caspases , Glucose , RNA Mensageiro
15.
Mod Pathol ; 35(9): 1181-1192, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35641658

RESUMO

Lung adenocarcinoma (LUAD) is a heterogeneous disease. Our study aimed to understand the unique molecular features of preinvasive to invasive LUAD subtypes. We retrospectively analyzed the clinical, histopathological, and molecular data of 3,254 Chinese patients with preinvasive lesions (n = 252), minimally invasive adenocarcinomas (n = 479), and invasive LUAD (n = 2,523). Molecular data were elucidated using a targeted 68-gene next-generation sequencing panel. Our findings revealed four preinvasive lesion-predominant gene mutations, including MAP2K1 insertion-deletions (indels), BRAF non-V600E kinase mutations, and exon 20 insertions (20ins) in both EGFR and ERBB2, which we referred to as mutations enriched in AIS (MEA). The detection rate of MEA in invasive tumors was relatively lower. MAP2K1 missense mutations, which were likely passenger mutations, co-occurred with oncogenic driver mutations, while small indels were mutually exclusive from other genes regardless of the invasion level. BRAF non-V600E kinase-mutant invasive adenocarcinomas (IAC) had significantly higher mutation rates in tumor suppressor genes but lower frequency of co-occurring oncogenic driver mutations than non-kinase-mutant IAC, suggesting the potential oncogenic activity of BRAF non-V600E kinase mutations albeit weaker than BRAF V600E. Moreover, similar to the extremely low frequency of MAP2K1 indels in IAC, BRAF non-V600E kinase domain mutations co-occurring with TSC1 mutations were exclusively found in preinvasive lesions. Compared with EGFR L858R and exon 19 deletion, patients with preinvasive lesions harboring 20ins in either EGFR or ERBB2 were significantly younger, while those with IAC had similar age. Furthermore, our study demonstrated distinct mutational features for subtypes of oncogene mutations favored by different invasion patterns in adenocarcinomas. In conclusion, our data demonstrate distinct mutational features between preinvasive lesions and invasive tumors with MEA, suggesting the involvement of MEA in the early stages of tumorigenesis. Further pre-clinical studies are required to establish the role of these genes in the malignant transformation of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Carcinogênese , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos
16.
Cancer Invest ; 40(8): 663-674, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35770858

RESUMO

BACKGROUND: Like other cancers, considerable effort has been made in acute myeloid leukemia (AML) to identify prognostic genes and long noncoding RNAs (lncRNAs) with their potential clinical applications. However, to date, no integrated prognostic model has been developed that combines both gene expression and lncRNAs as a singular approach in AML. METHOD: Comprehensive bioinformatic approaches (Weighted gene co-expression network analysis, Univariate Cox regression analyses, Pearson correlation, LASSO-Cox regression, Wilcoxon test) were used to construct the signature and to define high- and low-risk groups in AML datasets. ESTIMATE and CIBERSORT algorithms were applied to investigate the potential impact of infiltrating immune cells based on the obtained signature in tumor microenvironment. In addition, gene ontology (GO) and KEGG enrichment were applied to explore the potential function of the signature. RESULTS: Herein, we focused on immune-related genes (IRGs) and immune-related long noncoding RNAs (IRlncRNAs) and constructed an integrated prognostic immunorelevant signature in AML. The obtained signature exhibit five IRGs (DAXX, PSMB8, CSRP1, RAC2 and PTPN6) and one IRlncRNA (AC080037.2) and is strictly associated with age and FAB (French-American-British classification). Importantly, the high-risk AML group (defined by the signature) correlated positively with three types of scores (immune score, stroma score, and ESTIMATE score). We also identified a few immune cells (resting mast cells and monocytes) potentially involved in the correlation between signature and survival of AML patients. The prognostic ability of the obtained signature was tested in the training cohort and then validated in both test and total cohorts. The pathway enrichment analysis confirmed the possible immune- related role of the signature. CONCLUSION: We constructed an integrated prognostic signature comprising five immune-related protein-coding genes (IRPCG) (DAXX, PSMB8, CSRP1, RAC2, and PTPN6) and one immune-related lncRNA (AC080037.2) that may serve as potential biomarkers for predicting survival and further stratifying AML patients.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Biomarcadores Tumorais/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética
17.
Kidney Blood Press Res ; 47(4): 247-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35038704

RESUMO

BACKGROUND: Diabetic nephropathy is a common complication of the kidneys induced by diabetes and is the main cause of end-stage renal disease. MicroRNA-494-3p was reported to be upregulated in renal tissues collected from db/db mice, but its specific role in diabetic nephropathy was still unclear. This study aimed to explore the effect of miR-494-3p on renal fibrosis using an in vitro cell model of diabetic nephropathy. METHODS: After human renal tubular epithelial cells (HK-2) were treated with high glucose (HG), the viability and apoptosis of cells were examined by CCK-8 assays and flow cytometry analyses. Additionally, protein levels of fibronectin, collagen I, collagen III, collagen IV, and epithelial-mesenchymal transition (EMT) markers in HG-induced HK-2 cells were quantified by Western blotting. miR-494-3p expression in HK-2 cells was detected by reverse-transcription quantitative polymerase chain reaction. The binding relation between miR-494-3p and the messenger RNA suppressor of cytokine signaling 6 (SOCS6) was detected by luciferase reporter assays. RESULTS: HG reduced cell viability and enhanced cell apoptosis in a time- or concentration-dependent manner. Additionally, HG induced collagen accumulation and triggered the EMT process. miR-494-3p was upregulated in HG-treated HK-2 cells. miR-494-3p inhibition alleviated HG-induced cell dysfunction. Mechanistically, miR-494-3p bound with SOCS6 and negatively regulated SOCS6 expression. Moreover, silencing SOCS6 rescued the suppressive effect of miR-499-5p inhibition on HG-induced cell dysfunction. CONCLUSION: miR-494-3p aggravates renal fibrosis, EMT process, and cell apoptosis by targeting SOCS6, suggesting that the miR-494-3p/SOCS6 axis may become a potential strategy for the treatment of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , MicroRNAs/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linhagem Celular , Nefropatias Diabéticas/patologia , Células Epiteliais/patologia , Fibrose , Glucose/metabolismo , Glucose/farmacologia , Humanos
18.
PLoS Pathog ; 15(6): e1007836, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242272

RESUMO

Dengue is the most widespread vector-borne viral disease caused by dengue virus (DENV) for which there are no safe, effective drugs approved for clinical use. Here, by using sequential antigen panning of a yeast antibody library derived from healthy donors against the DENV envelop protein domain III (DIII) combined with depletion by an entry defective DIII mutant, we identified a cross-reactive human monoclonal antibody (mAb), m366.6, which bound with high affinity to DENV DIII from all four DENV serotypes. Immunogenetic analysis indicated that m366.6 is a germline-like mAb with very few somatic mutations from the closest VH and Vλ germline genes. Importantly, we demonstrated that it potently neutralized DENV both in vitro and in the mouse models of DENV infection without detectable antibody-dependent enhancement (ADE) effect. The epitope of m366.6 was mapped to the highly conserved regions on DIII, which may guide the design of effective dengue vaccine immunogens. Furthermore, as the first germline-like mAb derived from a naïve antibody library that could neutralize all four DENV serotypes, the m366.6 can be a tool for exploring mechanisms of DENV infection, and is a promising therapeutic candidate.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular , Cricetinae , Dengue/genética , Dengue/imunologia , Vírus da Dengue/genética , Epitopos/genética , Humanos , Proteínas do Envelope Viral/genética
19.
Inorg Chem ; 60(4): 2542-2552, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33481577

RESUMO

Uniform and well-dispersed SiO2:x%Tb3+@Lu2O3:y%Eu3+ core-shell spherical phosphors were synthesized via a solvothermal method followed by a subsequent calcination process. The structure, phase composition, and morphology of the samples were studied by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that the Lu2O3:Eu3+ layer was evenly coated on the surface of SiO2:Tb3+ spheres and the shell thickness was about 45-65 nm. The PL spectra and fluorescence lifetimes of the samples were further studied. It was proved that the multicolor luminescence of the samples could be realized by changing the doping concentration ratio of Eu3+ or by changing the excitation wavelengths. Compared with SiO2@Lu2O3:3%Tb3+,6%Eu3+, SiO2:3%Tb3+@Lu2O3:6%Eu3+ showed stronger luminescence intensity, longer fluorescence lifetime, and higher energy transfer efficiency, which was attributed to the effective interfacial energy transfer, and the interfacial energy transfer mechanism from Tb3+ to Eu3+ was a dipole-dipole interaction mechanism. The XPS results indicated that the sample contained a high content of Si-O-Lu bonds, which proved that there was a strong interaction between the SiO2 core and the Lu2O3 shell, making the interfacial energy transfer possible. These results provided a new idea for luminescence enhancement and multicolor luminescence.

20.
Environ Sci Technol ; 55(3): 2006-2015, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434000

RESUMO

Previous studies demonstrated that methane can be used as an electron donor to microbially remove various oxidized contaminants in groundwater. Natural gas, which is more widely available and less expensive than purified methane, is potentially an alternative source of methane. However, natural gas commonly contains a considerable amount of ethane (C2H6) and propane (C3H8), in addition to methane. It is important that these gaseous alkanes are also utilized along with methane to avoid emissions. Here, we demonstrate that perchlorate (ClO4-), a frequently reported contaminant in groundwater, can be microbially reduced to chloride (Cl-) driven by C2H6 or C3H8 under oxygen-limiting conditions. Two independent membrane biofilm reactors (MBfRs) supplied with C2H6 and C3H8, respectively, were operated in parallel to biologically reduce ClO4-. The continuous ClO4- removal during long-term MBfR operation combined with the concurrent C2H6/C3H8 consumption and ClO4- reduction in batch tests confirms that ClO4- reduction was associated with C2H6 or C3H8 oxidation. Polyhydroxyalkanoates (PHAs) were synthesized in the presence of C2H6 or C3H8 and were subsequently utilized for supporting ClO4- bio-reduction in the absence of gaseous alkanes. Analysis by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that transcript abundance of bmoX (encoding alpha hydroxylase subunit of C2H6/C3H8 monooxygenase) was positively correlated to the consumption rates of C2H6/C3H8, while pcrA (encoding a catalytic subunit of perchlorate reductase) was positively correlated to the consumption of ClO4-. High-throughput sequencing targeting 16S rRNA, bmoX, and pcrA indicated that Mycobacterium was the dominant microorganism oxidizing C2H6/C3H8, while Dechloromonas may be the major perchlorate-reducing bacterium in the biofilms. These findings shed light on microbial ClO4- reduction driven by C2H6 and C3H8, facilitating the development of cost-effective strategies for ex situ groundwater remediation.


Assuntos
Etano , Percloratos , Reatores Biológicos , Oxirredução , Propano , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA