Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 146(23): 16340-16347, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820231

RESUMO

A stable aluminum tris(dithiolene) triradical (3) was experimentally realized through a low-temperature reaction of the sterically demanding lithium dithiolene radical (2) with aluminum iodide. Compound 3 was characterized by single-crystal X-ray diffraction, UV-vis and EPR spectroscopy, SQUID magnetometry, and theoretical computations. The quartet ground state of triradical 3 has been unambiguously confirmed by variable-temperature continuous wave EPR experiments and SQUID magnetometry. Both SQUID magnetometry and broken-symmetry DFT computations reveal a small doublet-quartet energy gap [ΔEDQ = 0.18 kcal mol-1 (SQUID); ΔEDQ = 0.14 kcal mol-1 (DFT)]. The pulsed EPR experiment (electron spin echo envelop modulation) provides further evidence for the interaction of these dithiolene-based radicals with the central aluminum nucleus of 3.

2.
Small ; : e2401995, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818678

RESUMO

Upgrading thermosetting polymer waste and harvesting unwanted electromagnetic energy are of great significance in solving environmental pollution and energy shortage problems. Herein, inspired by the glass-blowing art, a spontaneous, controllable, and scalable strategy is proposed to prepare hollow carbon materials by inner blowing and outside blocking. Specifically, hierarchically neuron-like hollow carbon materials (HCMSs) with various sizes are fabricated from melamine-formaldehyde sponge (MS) waste. Benefiting from the synergistic of the hollow "cell body" and the connected "protrusions" networks, HCMSs reveal superior electromagnetic absorption performance with a strong reflection loss of -54.9 dB, electromagnetic-heat conversion ability with a high conversion efficiency of 34.4%, and efficient energy storage performance in supercapacitor. Furthermore, a multifunctional device integrating electromagnetic-heat-electrical energy conversion is designed, and its feasibility is proved by experiments and theoretical calculations. The integrated device reveals an output voltage of 34.5 mV and a maximum output power of 0.89 µW with electromagnetic radiation for 60 s. This work provides a novel solution to recycle polymer waste, electromagnetic energy, and unwanted thermal energy.

3.
Small ; : e2401429, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808805

RESUMO

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

4.
Small ; 20(33): e2400980, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38545991

RESUMO

Polyolefin separators are the most commonly used separators for lithium batteries; however, they tend to shrink when heated, and their Li+ transference number (t Li +) is low. Metal-organic frameworks (MOFs) are expected to solve the above problems due to their high thermal stability, abundant pore structure, and open metal sites. However, it is difficult to prepare high-porosity MOF-based membranes by conventional membrane preparation methods. In this study, a high-porosity free-standing MOF-based safety separator, denoted the BCM separator, is prepared through a nano-interfacial supramolecular adhesion strategy. The BCM separator has a large specific surface area (450.22 m2 g-1) and porosity (62.0%), a high electrolyte uptake (475 wt%), and can maintain its morphology at 200 °C. The ionic conductivity and t Li + of the BCM separator are 1.97 and 0.72 mS cm-1, respectively. Li//LiFePO4 cells with BCM separators have a capacity retention rate of 95.07% after 1100 cycles at 5  C, a stable high-temperature cycling performance of 300 cycles at 80 °C, and good capacity retention at -40 °C. Li//NCM811 cells with BCM separators exhibit significantly improved rate performance and cycling performance. Pouch cells with BCM separators can work at 120 °C and have good safety at high temperature.

5.
Cell Commun Signal ; 22(1): 93, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302971

RESUMO

BACKGROUND: Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS: Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS: Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION: Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima , Proteômica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Glicólise , Células de Schwann/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Mamíferos/metabolismo
6.
Biomacromolecules ; 25(6): 3795-3806, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781116

RESUMO

Biodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control. Initial copolymerization of l-lactide and ε-caprolactone sets a tunable Tg close to body temperature, followed by block copolymerization with poly(p-dioxanone) to form a hard domain. This yields a uniform microphase-separation morphology, ensuring robust SME and facilitating the development of roughly porous surface structures in alkaline environments. Cell experiments indicate that these rough surfaces significantly enhance cellular activities, such as adhesion, proliferation, and osteogenic differentiation. Our approach provides a methodology for balancing biodegradability, SMEs, three-dimensional (3D) printability, and bioactivity in materials through hierarchical structure regulation.


Assuntos
Poliuretanos , Poliuretanos/química , Poliuretanos/farmacologia , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Porosidade , Adesão Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Camundongos , Poliésteres/química , Diferenciação Celular/efeitos dos fármacos , Lactonas/química , Lactonas/farmacologia , Humanos , Caproatos/química , Dioxanos/química , Polímeros
7.
Angew Chem Int Ed Engl ; 63(26): e202405912, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38655622

RESUMO

Although many approaches have been proposed to recycling waste epoxy resin (EP), the separation of mixed degraded products remains a challenge due to their similar structures. To address this, we present a catalytic oxidation strategy that enables mild degradation of EP and in situ separation of degraded products through supramolecular interactions. The oxidative degradation relies on FeIV=O radicals with strong oxidizing properties, which are generated from the electron transfer of FeCl2 with reaction reagents. As the FeIV=O radicals attacked the C-N bonds of EP, EP was broken into fragments rich in active functional groups. Meanwhile, the FeIV=O radicals were reduced to iron ions that can coordinate with the carboxyl groups on the fragments. As a result, the degraded products with different carboxyl content can be effortlessly separated into liquid and solid phase by coordinating with the catalyst. The success of this work lays the foundation for high-value application of degraded products and provides new design ideas for recycling waste plastics with complex compositions.

8.
Angew Chem Int Ed Engl ; 63(9): e202314859, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38224179

RESUMO

Liquid crystal actuators conventionally undergo shape changes across an order-disorder phase transition between liquid crystal (LC) and isotropic phases. In this study, we introduce an innovative Liquid Crystal Polymer (LCP) actuator harnessing an order-order LC phase transition mechanism. The LCP film is easily stretchable within the LC phase, facilitated by the π-π stacking of phenyl groups serving as robust physical crosslinking points, and thereby transforms to a stable monodomain structure. The resultant monodomain LCP actuator shows a distinctive reversible dynamic shape change, exhibiting extension followed by contraction along the LC director on cooling. The extension is propelled by the reversible smectic C to smectic A phase transition, and the contraction is attributed to the re-entry to the smectic C phase from smectic A phase. Thermal annealing temperature determines this peculiar dynamic shape change, which occurs during both heating and cooling processes. This pivotal attribute finds manifestation in gripper and flower-shaped actuators, adeptly executing grabbing and releasing as well as blooming and closure motions within a single thermal stimulation. In essence, our study introduces an innovative approach to the realm of LCP actuators, ushering in a new avenue for the design and fabrication of versatile and dynamically responsive LCP actuators.

9.
Angew Chem Int Ed Engl ; 63(33): e202407510, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38774971

RESUMO

Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume saturated dicarboxylic acids in high carbon yield of 85.9 % in which the carbon yield of long chain dicarboxylic (C10-C20) acids can reach 58.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.

11.
IEEE Trans Cybern ; PP2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037880

RESUMO

In most existing results, event-triggered controllers are designed based on the backstepping design approach for uncertain strict-feedback nonlinear systems (SFNSs). However, the transmitted signals in the event-triggered scheme (ETS) are discontinuous, which makes the repetitive differentiation of virtual control signals undefined. To overcome this deficiency, this article designs an event-triggered adaptive controller for uncertain SFNSs based on the fully actuated system (FAS) approach. Since the system states and the adaptive parameters are only updated at each triggering instant, the original dynamics cannot be completely removed by using the FAS approach, leading to that the asymptotic stability of the control system is difficult to be guaranteed. To handle such a problem, an ETS with the adaptive parameters is constructed based on Lyapunov method to compensate the effect of triggering. As a result, the asymptotic stability of the system can be guaranteed in the presence of nonlinearities without the global Lipschitz condition, and Zeno behavior can be avoided by using the contradiction method. Furthermore, a positive lower bound for interevent intervals can be got by adding a constant into the ETS, which ensures that the system is practically stabilizable under the bounded nonlinearities. Finally, two simulation examples are presented to demonstrate the superiority and effectiveness of the proposed approach.

12.
J Hazard Mater ; 469: 133914, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430598

RESUMO

Persistent organic pollutants (POPs) sourced by the forest fire release are emerging as significant contributors. Despite their increasing importance, the impact of forest fires on POPs remains inadequately explored and an unclear understanding. Herein, the research, choosing four typical forest combustibles, focuses on the relationship between typical POPs and wildfire parameters by assessing the predominant compounds and their concentration in POPs emissions from such fuels through molecular-level analysis. Experiments reveal forest combustibles thermally degrade to release products, releasing a variety of products, including acids (>7.94 %), aldehydes (>2.32 %), ketones (>3.40 %), alcohols (>7.70 %), esters (>2.33 %), ethers (>4.44 %), hydrocarbons (>6.36 %), aromatic compounds (>21.40 %), and nitrogen-bearing compounds (>11.83 %); notably, aromatic compounds, containing substantial concentrations, are also recognized as POPs. By delving into the pyrolysis (20 °C·ms-1) and burning processes (25, 35 and 50 kW/m2) of forest combustibles, we can gain a comprehensive understanding of the origin of POPs in wildfires. Moreover, Pearson correlation analysis is employed to establish connections between emitting volatiles and forest fire risk, further unveiling a significant correlation between fire hazards of forest combustibles and the presence of aromatic compounds (Correlation over 0.8). These findings are crucial for comprehending the POPs in forests and evaluating forest fire hazards at the molecular level.

13.
Chemosphere ; 355: 141738, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513955

RESUMO

Dye-contaminated water and waste plastic both pose enormous threats to human health and the ecological environment, and simultaneously solving these two issues in a sustainable and resource-saving way is highly important. In this work, a sodium alginate-polyethylene terephthalate-sodium alginate (SA@PET) composite adsorbent for efficient dye removal is fabricated using wasted PET bottle and marine plant-based SA via simple and energy-efficient nonsolvent-induced phase separation (NIPS) method. Benefiting from its porous structure and the abundant binding sites, SA@PET shows an excellent methylene blue (MB) adsorption capacity of 1081 mg g-1. The Redlich-Peterson model more accurately describes the adsorption behavior, suggesting multiple adsorption mechanisms. In addition to the electrostatic attractions of SA to MB, polar interactions between the PET matrix and MB are also identified as adsorption mechanisms. It is worth mentioning that SA@PET could be recycled 7 times without a serious decrease in performance, and the trifluoroacetic acid-dichloromethane solvent involved in the NIPS process has the possibility of reuse and stepwise recovery. Finally, the discarded adsorbent could be completely degraded under mild conditions. This work provides not only a composite adsorbent with excellent cationic dye removal performance for wastewater treatment, but also an upcycling strategy for waste PET.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Alginatos/química , Porosidade , Poluentes Químicos da Água/análise , Adsorção , Purificação da Água/métodos , Azul de Metileno/química , Cinética , Concentração de Íons de Hidrogênio
14.
Chempluschem ; : e202400341, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975963

RESUMO

Dynamic covalent chemistry is a promising strategy for developing recyclable thermosets and their carbon fiber reinforced composites, in line with the goal of green and sustainable development. However, a significant challenge lies in balancing the dynamic reversibility and the desired service performances, such as thermal, mechanical properties, and flame retardancy. It has hindered the broader application of dynamic materials beyond the initial proof of concept. This concept provides an overview of the current state of research on phosphorus-containing covalent adaptable networks (CANs), highlighting key designing and regulating principles for tailoring comprehensive properties including flame retardancy, mechanical and thermal properties, as well as dynamic behaviours such as malleability, reprocessability and degradability. Finally, new frontiers and opportunities in developing high-performance sustainable CANs-based thermosets and their carbon fiber composites for structural engineering applications are prospected.

15.
Int J Biol Macromol ; 264(Pt 1): 130409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417750

RESUMO

Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.


Assuntos
Resinas Epóxi , Retardadores de Chama , Gluconato de Cálcio , Biomassa , Difusão , Polifosfatos
16.
Dalton Trans ; 53(14): 6178-6183, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506299

RESUMO

While the dithiolene-based N-heterocyclic silane (4) reacts with two equivalents of BX3 (X = Br, I) to give zwitterionic Lewis adducts 5 and 8, respectively, the parallel reaction of 4 with BCl3 results in 10, a dithiolene-substituted N-heterocyclic silane, via the Si-S bond cleavage. Unlike 5, the labile 8 may be readily converted to 9via BI3-mediated cleavage of the Si-N bond. The formation of 5 and 8 confirms that 4 uniquely possesses dual nucleophilic sites: (a) the terminal sulphur atom of the dithiolene moiety; and (b) the backbone carbon of the N-heterocyclic silane unit.

17.
Nat Commun ; 15(1): 4498, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802467

RESUMO

Recycling strategies for mixed plastics and textile blends currently aim for recycling only one of the components. Here, we demonstrate a water coupling strategy to co-hydrolyze polyester/cotton textile blends into polymer monomers and platform chemicals in gamma-valerolactone. The blends display a proclivity for achieving an augmented 5-hydroxymethylfurfural yield relative to the degradation of cotton alone. Controlled experiments and preliminary mechanistic studies underscore that the primary driver behind this heightened conversion rate lies in the internal water circulation. The swelling and dissolving effect of gamma-valerolactone on polyester enables a fast hydrolysis of polyester at much lower concentration of acid than the one in the traditional hydrolysis methods, effectively mitigating the excessive degradation of cotton-derived product and undesirable product formation. In addition, the system is also applicable to different kinds of blends and PET mixed plastics. This strategy develops an attractive path for managing end-of-life textiles in a sustainable and efficient way.

18.
Research (Wash D C) ; 7: 0406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979514

RESUMO

Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.

19.
Nat Commun ; 15(1): 2726, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548723

RESUMO

Polymeric materials, rich in carbon, hydrogen, and oxygen elements, present substantial fire hazards to both human life and property due to their intrinsic flammability. Overcoming this challenge in the absence of any flame-retardant elements is a daunting task. Herein, we introduce an innovative strategy employing catalytic polymer auto-pyrolysis before combustion to proactively release CO2, akin to possessing responsive CO2 fire extinguishing mechanisms. We demonstrate that potassium salts with strong nucleophilicity (such as potassium formate/malate) can transform conventional polyurethane foam into materials with fire safety through rearrangement. This transformation results in the rapid generation of a substantial volume of CO2, occurring before the onset of intense decomposition, effectively extinguishing fires. The inclusion of just 1.05 wt% potassium formate can significantly raise the limiting oxygen index of polyurethane foam to 26.5%, increase the time to ignition by 927%, and tremendously reduce smoke toxicity by 95%. The successful application of various potassium salts, combined with a comprehensive examination of the underlying mechanisms, underscores the viability of this strategy. This pioneering catalytic approach paves the way for the efficient and eco-friendly development of polymeric materials with fire safety.

20.
ACS Appl Mater Interfaces ; 16(15): 19519-19528, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38580622

RESUMO

The inherent flammability of most polymeric materials poses a significant fire hazard, leading to substantial property damage and loss of life. A universal flame-retardant protective coating is considered as a promising strategy to mitigate such risks; however, simultaneously achieving high transparency of the coatings remains a great challenge. Here, inspired by the moth eye effect, we designed a nanoporous structure into a protective coating that leverages a hydrophilic-hydrophobic interactive assembly facilitated by phosphoric acid protonated amino siloxane. The coating demonstrates robust adhesion to a diverse range of substrates, including but not limited to fabrics, foams, paper, and wood. As expected, its moth-eye-inspired nanoporous structure conferred a high visible light transparency of >97% and water vapor transmittance of 96%. The synergistic effect among phosphorus (P), nitrogen (N), and silicon (Si) largely enhanced the char-forming ability and restricted the decomposition of the coated substrates, which successfully endowed the coating with high fire-fighting performance. More importantly, for both flexible and rigid substrates, the coated samples all possessed great mechanical properties. This work provides a new insight for the design of protective coatings, particularly focusing on achieving high transparency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA