Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(22): e2306994, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098339

RESUMO

The performances of solid-state polymer electrolytes are urgently required to be further improved for high energy density lithium metal batteries. Herein, a highly reinforced ultrathin composite polymer electrolyte (PLPP) is successfully fabricated in a large scale by densely filling the well-dispersed mixture of polyethylene oxide (PEO), Li-salt (LiTFSI) and a polymer of intrinsic microporosity (PIM-1) into porous poly(tetrafluoroethylene) (PTFE) matrix. Based on the macro-plus-micro synergistic enhancement of the PTFE with excellent mechanical properties and the soluble PIM-1 with suitable functional groups, the PLPP electrolyte exhibits excellent properties including mechanical stress, thermal stability, lithium-ion transference number, voltage window and ionic conductivity, which are all superior to the typical PEO/LiTFSI electrolytes. As a result, the Li/PLPP/Li symmetric cell can stably cycle for > 2000 h, and the LiFePO4/PLPP/Li full cell exhibits excellent rate performance (>10 C) and high cycling stability with an initial capacity of 158.8 mAh g-1 and a capacity retention of 78.8% after 300 cycles. In addition, the excellent mechanical properties as well as the wide voltage window reasonably result in the stable operation of full cells with either high-loading cathode up to 28.1 mg cm-2 or high voltage cathode with high energy density.

2.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677935

RESUMO

The development of tunable molecule separation membranes requires materials with remote controllability and ultra-high separation capability. In this paper, a novel photoswitchable metal organic framework (MOF) thin film (Cu2(AzoBPDC)2) was prepared by liquid phase epitaxial layer-by-layer assembly to realize the reversible remote-controlled switching. The azobenzene side groups in the Cu2(AzoBPDC)2 thin film showed excellent reversible photoswitching performance under UV (365 nm) and Vis (450 nm) irradiation, achieving the remote-controlled mode of the diffusion flux of polar gas molecules in the MOF thin film.


Assuntos
Estruturas Metalorgânicas , Compostos Azo
3.
Nano Lett ; 21(2): 1102-1107, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33404245

RESUMO

Metal-organic frameworks (MOFs) provide a novel strategy to precisely control the alignment of molecules to enhance exciton diffusion for high-performance organic semiconductors. In this paper, we characterize exciton dynamics in highly ordered and crystalline porphyrin MOF nanofilms by time-resolved photoluminescence and femtosecond-resolved transient absorption spectroscopy. Results suggest that porphyrin MOF nanofilms could be a promising candidate for high-performance organic photovoltaic semiconductors in which the diffusion coefficient and diffusion length of excitons are 9.0 × 10-2 cm2 s-1 and 16.6 nm, respectively, comparable with or even beyond that of other excellent organic semiconductors. Moreover, by monitoring real-time exciton dynamics it is revealed that excitons in MOF nanofilms undergo high-efficient intermolecular hopping and multiexciton annihilation due to the short intermolecular distance and aligned molecular orientation in MOF structure, thus providing new insights into the underlying physics of exciton dynamics and many-body interaction in molecular assembled systems.

4.
Nano Lett ; 19(12): 9095-9101, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765163

RESUMO

Benefitting from the strong intrinsic nonlinear optical (NLO) property of the individual porphyrin molecule, the integration of porphyrin molecules into tightly aligned arrays may lead to intuitively promising high-performance materials of tailorable NLO effect. In order to verify this speculation, we prepare crystalline and highly oriented porphyrin-based surface-supported metal-organic framework nanofilms (SURMOFs) and then characterize their NLO performance. Results reveal that porphyrin-based SURMOFs exhibit the highest saturable absorption (SA) yet recorded with a third-order NLO absorption coefficient up to -10-3 cm/W, about 7 orders stronger than porphyrin solvents in which the porphyrin molecules are disordered, under a certain excitation strength. Further increasing the excitation strength shows that the NLO absorption property of the porphyrin-based SURMOFs can be effectively modulated from SA to reverse saturable absorption, followed by a reemerging SA. The multiple-stage NLO switching is assigned to the interplay of simultaneous one-photon SA, two-photon absorption, and two-photon SA effects. The superior and modulatable NLO property as well as the designable and ordered crystalline structure suggest that porphyrin-based SURMOFs might be employed as a new class of high-performance NLO materials with potential applications in novel optical switches or logic gates to realize the all-optical information process.

5.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251389

RESUMO

Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm-1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed.


Assuntos
Membranas Artificiais , Polímeros/química , Prótons , Água/química , Ácidos Carboxílicos/química , Condutividade Elétrica , Técnicas Eletroquímicas , Géis/química , Microscopia de Força Atômica , Nanoporos/ultraestrutura , Técnicas de Microbalança de Cristal de Quartzo
6.
Angew Chem Int Ed Engl ; 55(41): 12683-7, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27599895

RESUMO

We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion.

7.
Opt Express ; 23(11): 13725-33, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072745

RESUMO

Monolithic, crystalline and highly oriented coordination network compound (CNC) Prussian blue (PB) thin films have been deposited though different routes on conductive substrates. Characterization of the monolithic thin films reveals a long-term stability, even after many redox cycles the crystallinity as well as the high orientation remain intact during the electrochromic switching process.

8.
Chemphyschem ; 16(18): 3779-83, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26455589

RESUMO

Reversible remote-controlled switching of the properties of nanoporous metal-organic frameworks (MOFs) is enabled by incorporating photoswitchable azobenzene. The interaction of the host material with different guest molecules, which is crucial for all applications, is precisely studied using thin MOF films of the type Cu2 (BDC)2 (AzoBipyB). A molecule-specific effect of the photoswitching, based on dipole-dipole interactions, is found.


Assuntos
Metais/química , Compostos Orgânicos/química , Adsorção , Fotoquímica , Técnicas de Microbalança de Cristal de Quartzo , Espectrofotometria Ultravioleta , Difração de Raios X
9.
Phys Chem Chem Phys ; 17(35): 22721-5, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26255748

RESUMO

The activation barrier for cis-to-trans isomerization is a key parameter for governing the properties of photoswitchable molecules. This quantity can be computed by using theoretical methods, but experimental determination is not straightforward. Photoswitchable molecules typically do not change their conformation in the pure crystalline state. When the molecules are in solution, the switching is affected by the viscosity and polarity of the solvent and when embedded in polymers, the conformational change is affected by the polymer matrix. Here, we describe a novel approach where the photoswitchable group is integrated in a highly crystalline, porous molecular framework. Sufficiently large pore sizes in such metal-organic frameworks, MOFs, allow unhindered switching and the strictly periodic structure of the lattice eliminates virtually all contributions from inhomogeneities. Using IR spectroscopy to probe the conformational state of azobenzene, the energy barrier separating the cis and the trans state could be determined by an Arrhenius analysis of the data accumulated in a temperature regime between 314 K and 385 K. The result, 1.09 ± 0.09 eV, is in very good agreement with the activation energy reported for the thermal cis-to-trans isomerization of free azobenzene as computed by DFT calculations.


Assuntos
Compostos Azo/química , Compostos Organometálicos/química , Teoria Quântica , Estereoisomerismo
10.
Phys Chem Chem Phys ; 17(22): 14582-7, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25966648

RESUMO

In this article, we use the popular photoswitchable molecule, azobenzene, to demonstrate that the embedding in a nanoporous, crystalline solid enables a precise understanding of light-induced, reversible molecular motion. We investigate two similar azobenzene-containing, pillared-layer metal-organic frameworks (MOFs): Cu2(AzoBPDC)2(BiPy) and Cu2(NDC)2(AzoBiPy). Experimental results from UV-vis spectroscopy and molecular uptake experiments as well as theoretical results based on density-functional theory (DFT) show that in the Cu2(AzoBPDC)2(BiPy) MOF structure, the azobenzene side groups undergo photoisomerization when irradiated with UV or visible light. In a very similar MOF structure, Cu2(NDC)2(AzoBiPy), the experimental studies show an unexpected absence of photoisomerization. The DFT calculations reveal that in both MOFs the initial and final states of the photoswitching process (the trans and the cis conformation) have similar energies, which strongly suggests that the reason for the effective blocking of photoswitching in the AzoBiPy-based MOFs must be related to the switching process itself. More detailed calculations show that in Cu2(NDC)2(AzoBiPy) a naphthalene linker from the molecular framework blocks the photoisomerization trajectory which leads from the trans to the cis conformation. For Cu2(AzoBPDC)2(BiPy), as a result of the different geometry, such a steric hindrance is absent.


Assuntos
Compostos Azo/química , Compostos Azo/efeitos da radiação , Modelos Químicos , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Simulação por Computador , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Cristalização , Isomerismo , Luz , Teste de Materiais , Simulação de Dinâmica Molecular , Nanopartículas/efeitos da radiação
11.
Nano Lett ; 14(3): 1526-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24512342

RESUMO

We demonstrate the realization of hierarchically organized MOF (metal-organic framework) multilayer systems with pronounced differences in the size of the nanoscale pores. Unusually large values for the lattice constant mismatch at the MOF-MOF heterojunctions are made possible by a particular liquid-phase epitaxy process. The multiheteroepitaxy is demonstrated for the isoreticular SURMOF-2 series [ Liu et al. Sci. Rep. 2012 , 2 , 921 ] by fabricating trilayer systems with lattice constants of 1.12, 1.34, and 1.55 nm. Despite these large (20%) lattice mismatches, highly crystalline, oriented multilayers were obtained. A thorough theoretical analysis of the MOF-on-MOF heterojunction structure and energetics allows us to identify the two main reasons for this unexpected tolerance of large lattice mismatch: the healing of vacancies with acetate groups and the low elastic constant of MOF materials.

12.
Angew Chem Int Ed Engl ; 54(25): 7441-5, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25960115

RESUMO

For inorganic semiconductors crystalline order leads to a band structure which gives rise to drastic differences to the disordered material. An example is the presence of an indirect band gap. For organic semiconductors such effects are typically not considered, since the bands are normally flat, and the band-gap therefore is direct. Herein we show results from electronic structure calculations demonstrating that ordered arrays of porphyrins reveal a small dispersion of occupied and unoccupied bands leading to the formation of a small indirect band gap. We demonstrate herein that such ordered structures can be fabricated by liquid-phase epitaxy and that the corresponding crystalline organic semiconductors exhibit superior photophysical properties, including large charge-carrier mobility and an unusually large charge-carrier generation efficiency. We have fabricated a prototype organic photovoltaic device based on this novel material exhibiting a remarkable efficiency.

13.
J Am Chem Soc ; 136(1): 8-11, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328287

RESUMO

We report the fabrication of 3D, highly porous, covalently bound polymer films of homogeneous thickness. These surface-bound gels combine the advantages of metal-organic framework (MOF) materials, namely, the enormous flexibility and the large size of the maximum pore structures and, in particular, the possibility to grow them epitaxially on modified substrates, with those of covalently connected gel materials, namely, the absence of metal ions in the deposited material, a robust framework consisting of covalent bonds, and, most importantly, pronounced stability under biological conditions. The conversion of a SURMOF (surface-mounted MOF) yields a surface-grafted gel. These SURGELs can be loaded with bioactive compounds and applied as bioactive coatings and provide a drug-release platform in in vitro cell culture studies.


Assuntos
Géis/química , Compostos Organometálicos/química , Bactérias , Química Click , Cobre/química , Reagentes de Ligações Cruzadas/química , Microscopia de Força Atômica , Tamanho da Partícula , Porosidade , Propriedades de Superfície
14.
Chemistry ; 20(32): 9879-82, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24938623

RESUMO

Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam)(2x)(Lcam)(2-2x)(dabco)]n (dabco = 1,4-diazabicyclo-[2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)]n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu2(Dcam)2(dabco)]n and [Cu2(Lcam)2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture.


Assuntos
Compostos Organometálicos/química , Dicroísmo Circular , Cristalização , Modelos Moleculares , Estereoisomerismo , Difração de Raios X
15.
J Nanosci Nanotechnol ; 14(2): 1181-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24749421

RESUMO

As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.


Assuntos
Fontes de Energia Elétrica , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura Alta , Tamanho da Partícula , Prótons
16.
Langmuir ; 29(51): 15958-64, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24283622

RESUMO

In this work, we demonstrate that strain-promoted azide-alkyne cycloaddition (SPAAC) yields virtually complete conversion in the context of the post-synthetic modification (PSM) of metal-organic frameworks (MOFs). We use surface-anchored MOF (SURMOF) thin films, [Zn2(N3-bdc)2(dabco)], grown on modified Au substrates using liquid-phase epitaxy (LPE) as a model system to first show that, with standard click chemistry, presently, the most popular method for rendering additional functionality to MOFs via PSM, quantitative conversion yields, cannot be reached. In addition, it is virtually impossible to avoid contaminations of the product by the cytotoxic Cu(I) ions used as a catalyst, a substantial problem for applications in life sciences. Both problems could be overcome by SPAAC, where a metal catalyst is not needed. After optimization of reaction conditions, conversion yields of nearly 100% could be achieved. The consequences of these results for various applications of PSM-modified SURMOFs in the fields of membranes, optical coatings, catalysis, selective gas separation, and chemical sensing are briefly discussed.


Assuntos
Química Click , Compostos Organometálicos/química , Zinco/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Catálise , Técnicas de Química Sintética , Cobre/química , Corantes Fluorescentes/química , Compostos Organometálicos/síntese química , Molhabilidade
17.
J Colloid Interface Sci ; 652(Pt A): 341-349, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597415

RESUMO

Photocatalytic water splitting has been regarded as one of the most promising technologies to generate hydrogen as an ideal energy carrier in the future. However, most of the experience for such process are derived from the researches based on the suspension powder photocatalysts under a stirring condition and a practical scaling application is urgently calling for the high-efficient panel reactors based on the membrane photocatalysts. Herein, we develop a new series of flexible and ultrastable membrane photocatalysts through a controllable growth of covalent organic framework (COF) photocatalysts on the polyacrylonitrile (PAN) electrospun fiber membrane. Multiple characterization techniques verify the successful anchoring of the COF-photocatalysts on the PAN fibers, forming a three-dimensional porous PAN/COF membrane photocatalyst with excellent light absorption ability, high specific surface area, and good hydrophily. As a result, the optimized PAN/COF membrane photocatalyst exhibits excellent hydrogen evolution rate up to 1.25 mmol g-1h-1 under visible-light irradiation without stirring, which is even higher than that of the corresponding suspension COF-powder photocatalyst with stirring. In particular, the PAN/COF membrane photocatalyst demonstrates a much more superior hydrogen evolution stability and also a much better recyclability. This study gives some experience for the practical scaling application of solar-driven water splitting.

18.
J Colloid Interface Sci ; 606(Pt 2): 1509-1523, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500154

RESUMO

Designing recyclable photocatalysts with high activity and stability has drawn considerable attention in the fields of sewage treatment. Herein, a series of heterojunctions constructed by zirconium-based metal-organic frameworks (UiO-66-NH2) and tungsten trioxide (WO3) is immobilized on carbon cloth via a facile solvothermal method, resulting in highly recyclable photocatalysts. Multiple characterization techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, verify the successful synthesis of UiO-66-NH2 nanospheres on the surface of needlelike WO3 modified carbon cloth. Results show that the optimal heterojunction photocatalyst exhibits excellent photocatalytic degradation efficiency for the removal of tetracycline (TC) from water, for which nearly 100% of TC is degraded within 60 min under visible light. Trapping experiments and electron spin resonance (ESR) spectra analyses demonstrate that the superoxide radicals O2- and photogenerated hole h+ play a dominant role in the degradation process. Excellent photocatalytic activity is dominantly attributed to the effective separation of photoinduced carriers in this type-Ⅱ heterostructure system. Moreover, the possible photocatalytic oxidation degradation pathway is confirmed by analyzing intermediates using liquid chromatography mass spectrometry (LC-MS). This study offers a highly efficient strategy to design recyclable heterojunction photocatalysts for the degradation of refractory antibiotics in sewage.


Assuntos
Estruturas Metalorgânicas , Antibacterianos , Carbono , Catálise , Luz , Óxidos , Tetraciclina , Tungstênio , Zircônio
19.
ACS Appl Mater Interfaces ; 14(6): 8036-8047, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119835

RESUMO

Conjugated quinones are promising cathode materials for sodium-ion batteries. However, the contemporary primary conjugated quinones cathodes still hold to limited capacity, poor rate performance and low cyclability, due to the poor electronic and ionic conductivity. Herein, a series of high-performance conjugated-quinones@MXene hybrid cathodes is constructed by an in situ polymerization-assembly strategy based on the hydrogen bond and S-Ti interaction. The PAQS@Ti3C2Tx MXene hybrid, as a typical example, exhibits sandwiched structure with intimate PAQS@MXene contact, resulting in efficient interfacial mass transfer. The assembled MXene is able to build interconnected conductive channels in the hybrid cathodes for continuous and fast electrons/ions transport, which is verified by both the experimental results and density functional theory (DFT) calculations. As a result, the optimal PAQS@MXene hybrid electrode delivers excellent electrochemical performances with high capacity (∼242 mA h g-1 at 100 mA g-1), superior fast-charge/discharge ability (∼148 and 121 mA h g-1 at 5 and 10 A g-1, respectively), and ultralong cycle life (capacity as high as 57 mA h g-1 after 9000 cycles at 5 A g-1), which are more superior to that of the pure PAQS electrodes. Besides, the analogous PPTS@Ti3C2Tx MXene hybrid cathode also shows better performances compared to the pure materials.

20.
ACS Appl Mater Interfaces ; 13(9): 10870-10877, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625845

RESUMO

Molybdenum disulfide (MoS2) with a graphite-like layer structure has attracted substantial interest as an anode material for sodium ion batteries (SIBs), but its inherent poor electrical conductivity and slow sodium ion transportation are the two important factors that limit its use in SIBs. Here, we report a general approach to synthesize a series of molecule-intercalated MoS2 with a precisely controlled interlayer distance of 0.62 to 1.24 nm in which the electrical conductivity could be also widely and finely adjusted from 1.3 × 10-4 to 3.5 × 10-2 S cm-1 via the insertion of different molecules. By adjusting the interlayer space and enhancing the electrical conductivity, the highest initial sodium ion storage capacity of 465 mA h g-1 (vs 195 mA h g-1 for the pure MoS2 anode) and the highest capacity of 420 mA h g-1 (vs 31 mA h g-1 for the pure MoS2 anode) after 600 cycles at a rate of 100 mA g-1 were obtained. The excellent performance is credited to the rapid Na+ and electron transport and higher material utilization derived from the synergistic effect of the expanded interlayer space and the higher electronic conductivity. The results provide some inspiration for the design and construction of superior layered anode materials for sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA