Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823390

RESUMO

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Influenza B , Influenza Humana , Neuraminidase , Neuraminidase/imunologia , Humanos , Vírus da Influenza B/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos
2.
Immunity ; 57(5): 1141-1159.e11, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38670113

RESUMO

Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinação , Animais , Camundongos , Humanos , Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Vírus da Influenza A/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Substituição de Aminoácidos , Linfócitos B/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia
3.
Nat Chem Biol ; 20(8): 944-945, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38321208
4.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592763

RESUMO

The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.


Assuntos
Arabidopsis , Microscopia Crioeletrônica , Arabidopsis/genética , Membrana Celular , Mecanotransdução Celular , Mutagênese
5.
Structure ; 32(2): 157-167.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103547

RESUMO

Members of the OSCA/TMEM63 family are mechanically activated ion channels and structures of some OSCA members have revealed the architecture of these channels and structural features that are potentially involved in mechanosensation. However, these structures are all in a similar state and information about the motion of different elements of the structure is limited, preventing a deeper understanding of how these channels work. Here, we used cryoelectron microscopy to determine high-resolution structures of Arabidopsis thaliana OSCA1.2 and OSCA2.3 in peptidiscs. The structure of OSCA1.2 matches previous structures of the same protein in different environments. Yet, in OSCA2.3, the TM6a-TM7 linker adopts a different conformation that constricts the pore on its cytoplasmic side. Furthermore, coevolutionary sequence analysis uncovered a conserved interaction between the TM6a-TM7 linker and the beam-like domain (BLD). Our results reveal conformational heterogeneity and differences in conserved interactions between the TMD and BLD among members of the OSCA family.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microscopia Crioeletrônica , Canais Iônicos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Domínios Proteicos , Proteínas de Arabidopsis/química , Canais de Cálcio/metabolismo
6.
Protein Sci ; 33(4): e4974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533540

RESUMO

Enveloped viruses carry one or multiple proteins with receptor-binding functionalities. Functional receptors can be glycans, proteinaceous, or both; therefore, recombinant protein approaches are instrumental in attaining new insights regarding viral envelope protein receptor-binding properties. Visualizing and measuring receptor binding typically entails antibody detection or direct labeling, whereas direct fluorescent fusions are attractive tools in molecular biology. Here, we report a suite of distinct fluorescent fusions, both N- and C-terminal, for influenza A virus hemagglutinins and SARS-CoV-2 spike RBD. The proteins contained three or six fluorescent protein barrels and were applied directly to cells to assess receptor binding properties.


Assuntos
Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral , Proteínas do Envelope Viral/química , Glicoproteína da Espícula de Coronavírus/química , Ligação Proteica , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo
7.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559180

RESUMO

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.

8.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585787

RESUMO

The study of immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is crucial for the development of an HIV vaccine. To date, only cows, making use of their ultralong CDRH3 loops, have reliably elicited bnAbs following immunization with HIV Envelope trimers. Antibody responses to the CD4 binding site have been readily elicited by immunization of cows with a stabilized Env trimer of the BG505 strain and, with more difficulty, to the V2-apex region of Env with a cocktail of trimers. Here, we sought to determine whether the BG505 Env trimer could be engineered to generate new bnAb specificities in cows. Since the cow CD4 binding site bnAbs bind to monomeric BG505 gp120, we also sought to determine whether gp120 immunization alone might be sufficient to induce bnAbs. We found that engineering the CD4 binding site by mutation of a key binding residue of BG505 HIV Env resulted in a reduced bnAb response that took more immunizations to develop. Monoclonal antibodies isolated from one animal were directed to the V2-apex, suggesting a re-focusing of the bnAb response. Immunization with monomeric BG505 g120 generated no serum bnAb responses, indicating that the ultralong CDRH3 bnAbs are only elicited in the context of the trimer in the absence of many other less restrictive epitopes presented on monomeric gp120. The results support the notion of a hierarchy of epitopes on HIV Env and suggest that, even with the presence in the cow repertoire of ultralong CDRH3s, bnAb epitopes are relatively disfavored.

9.
Pharmaceutics ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38931864

RESUMO

We describe the current Good Manufacturing Practice (cGMP) production and subsequent characterization of eOD-GT8 60mer, a glycosylated self-assembling nanoparticle HIV-1 vaccine candidate and germline targeting priming immunogen. Production was carried out via transient expression in the human embryonic kidney 293 (HEK293) cell line followed by a combination of purification techniques. A large-scale cGMP (200 L) production run yielded 354 mg of the purified eOD-GT8 60mer drug product material, which was formulated at 1 mg/mL in 10% sucrose in phosphate-buffered saline (PBS) at pH 7.2. The clinical trial material was comprehensively characterized for purity, antigenicity, glycan composition, amino acid sequence, and aggregation and by several safety-related tests during cGMP lot release. A comparison of the purified products produced at the 1 L scale and 200 L cGMP scale demonstrated the consistency and robustness of the transient transfection upstream process and the downstream purification strategies. The cGMP clinical trial material was tested in a Phase 1 clinical trial (NCT03547245), is currently being stored at -80 °C, and is on a stability testing program as per regulatory guidelines. The methods described here illustrate the utility of transient transfection for cGMP production of complex products such as glycosylated self-assembling nanoparticles.

10.
Hum Vaccin Immunother ; 20(1): 2388344, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39165108

RESUMO

Monoclonal neutralizing antibodies (mAbs) are considered an important prophylactic against SARS-CoV-2 infection in at-risk populations and a strategy to counteract future sarbecovirus-induced disease. However, most mAbs isolated so far neutralize only a few sarbecovirus strains. Therefore, there is a growing interest in bispecific antibodies (bsAbs) which can simultaneously target different spike epitopes and thereby increase neutralizing breadth and prevent viral escape. Here, we generate and characterize a panel of 30 novel broadly reactive bsAbs using an efficient controlled Fab-arm exchange protocol. We specifically combine some of the broadest mAbs described so far, which target conserved epitopes on the receptor binding domain (RBD). Several bsAbs show superior cross-binding and neutralization compared to the parental mAbs and cocktails against sarbecoviruses from diverse clades, including recent SARS-CoV-2 variants. BsAbs which include mAb COVA2-02 are among the most potent and broad combinations. As a result, we study the unknown epitope of COVA2-02 and show that this mAb targets a distinct conserved region at the base of the RBD, which could be of interest when designing next-generation bsAb constructs to contribute to a better pandemic preparedness.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Biespecíficos/imunologia , Humanos , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos/imunologia , Testes de Neutralização , Animais , Anticorpos Monoclonais/imunologia
11.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026813

RESUMO

Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing context for future vaccine trials and emphasizing the importance of carefully designing vaccines to boost protective responses towards conserved epitopes.

12.
J Chem Theory Comput ; 20(5): 2321-2333, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373307

RESUMO

Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model. Here, we investigate protein folding, unfolding, and misfolding of fast-folding proteins by examining different force fields with their recommended water models, i.e., ff14SB with the TIP3P model and ff19SB with the OPC model. To this end, we generated long conventional MD simulations highlighting the perks and pitfalls of these setups. Using Markov state models, we defined kinetically independent conformational substates and emphasized their distinct characteristics, as well as their corresponding state probabilities. Surprisingly, we found substantial differences in thermodynamics and kinetics of protein folding, depending on the combination of the protein force field and water model, originating primarily from the different water models. These results emphasize the importance of carefully choosing the force field and the respective water model as they determine the accuracy of the observed dynamics of folding events. Thus, the findings support the hypothesis that the water model is at least equally important as the force field and hence needs to be considered in future studies investigating protein dynamics and folding in all areas of biophysics.


Assuntos
Dobramento de Proteína , Água , Proteínas , Simulação de Dinâmica Molecular , Conformação Molecular , Termodinâmica , Conformação Proteica , Desdobramento de Proteína
13.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405899

RESUMO

The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.

14.
Cell Rep ; 43(5): 114171, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717904

RESUMO

Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase 1 clinical trial investigating a ferritin nanoparticle vaccine displaying H2 hemagglutinin (HA) in H2-naive and H2-exposed adults enabled us to perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited. We temporally map the epitopes targeted by serum antibodies after vaccine prime and boost, revealing that previous H2 exposure results in higher responses to the variable HA head domain. In contrast, initial responses in H2-naive participants are dominated by antibodies targeting conserved epitopes. We use cryoelectron microscopy and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the HA head, including the receptor-binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses post-vaccination.


Assuntos
Anticorpos Antivirais , Memória Imunológica , Vírus da Influenza A Subtipo H2N2 , Vacinas contra Influenza , Vacinação , Humanos , Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H2N2/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Formação de Anticorpos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Epitopos/imunologia , Adulto , Linfócitos B/imunologia
15.
Front Immunol ; 15: 1426232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119336

RESUMO

The HIV-1 envelope glycoprotein (Env) is the sole neutralizing determinant on the surface of the virus. The Env gp120 and gp41 subunits mediate receptor binding and membrane fusion and are generated from the gp160 precursor by cellular furins. This cleavage event is required for viral entry. One approach to generate HIV-1 neutralizing antibodies following immunization is to express membrane-bound Env anchored on the cell-surface by genetic means using the natural HIV gp41 transmembrane (TM) spanning domain. To simplify the process of Env trimer membrane expression we sought to remove the need for Env precursor cleavage while maintaining native-like conformation following genetic expression. To accomplish these objectives, we selected our previously developed 'native flexibly linked' (NFL) stabilized soluble trimers that are both near-native in conformation and cleavage-independent. We genetically fused the NFL construct to the HIV TM domain by using a short linker or by restoring the native membrane external proximal region, absent in soluble trimers, to express the full HIV Env ectodomain on the plasma membrane. Both forms of cell-surface NFL trimers, without and with the MPER, displayed favorable antigenic profiles by flow cytometry when expressed from plasmid DNA or mRNA. These results were consistent with the presence of well-ordered cell surface native-like trimeric Env, a necessary requirement to generate neutralizing antibodies by vaccination. Inoculation of rabbits with mRNA lipid nanoparticles (LNP) expressing membrane-bound stabilized HIV Env NFL trimers generated tier 2 neutralizing antibody serum titers in immunized animals. Multiple inoculations of mRNA LNPs generated similar neutralizing antibody titers compared to immunizations of matched NFL soluble proteins in adjuvant. Given the recent success of mRNA vaccines to prevent severe COVID, these are important developments for genetic expression of native-like HIV Env trimers in animals and potentially in humans.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Nanopartículas , RNA Mensageiro , Produtos do Gene env do Vírus da Imunodeficiência Humana , Animais , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Vacinas contra a AIDS/imunologia , Coelhos , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Lipídeos/imunologia , Multimerização Proteica , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/prevenção & controle , Feminino , Lipossomos
16.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328068

RESUMO

Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.

17.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38935072

RESUMO

Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.


Assuntos
Linfócitos B , Centro Germinativo , Vacinas contra Influenza , Vacinação , Centro Germinativo/imunologia , Humanos , Vacinas contra Influenza/imunologia , Linfócitos B/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Adulto , Feminino , Masculino , Pessoa de Meia-Idade
18.
Cell Rep ; 43(6): 114307, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38848216

RESUMO

The development of vaccines and therapeutics that are broadly effective against known and emergent coronaviruses is an urgent priority. We screened the circulating B cell repertoires of COVID-19 survivors and vaccinees to isolate over 9,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific monoclonal antibodies (mAbs), providing an expansive view of the SARS-CoV-2-specific Ab repertoire. Among the recovered antibodies was TXG-0078, an N-terminal domain (NTD)-specific neutralizing mAb that recognizes diverse alpha- and beta-coronaviruses. TXG-0078 achieves its exceptional binding breadth while utilizing the same VH1-24 variable gene signature and heavy-chain-dominant binding pattern seen in other NTD-supersite-specific neutralizing Abs with much narrower specificity. We also report CC24.2, a pan-sarbecovirus neutralizing antibody that targets a unique receptor-binding domain (RBD) epitope and shows similar neutralization potency against all tested SARS-CoV-2 variants, including BQ.1.1 and XBB.1.5. A cocktail of TXG-0078 and CC24.2 shows protection in vivo, suggesting their potential use in variant-resistant therapeutic Ab cocktails and as templates for pan-coronavirus vaccine design.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Animais , Betacoronavirus/imunologia , Camundongos
19.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766097

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

20.
NPJ Vaccines ; 9(1): 74, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582771

RESUMO

Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA