Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(11): 2835-2848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286852

RESUMO

This work presents the first systematic comparison of selenium (Se) speciation in plasma from cancer patients treated orally with three Se compounds (sodium selenite, SS; L-selenomethionine, SeMet; or Se-methylselenocysteine, MSC) at 400 µg/day for 28 days. The primary goal was to investigate how these chemical forms of Se affect the plasma Se distribution, aiming to identify the most effective Se compound for optimal selenoprotein expression. This was achieved using methodology based on HPLC-ICP-MS after sample preparation/fractionation approaches. Measurements of total Se in plasma samples collected before and after 4 weeks of treatment showed that median total Se levels increased significantly from 89.6 to 126.4 µg kg-1 Se (p < 0.001), particularly when SeMet was administered (190.4 µg kg-1 Se). Speciation studies showed that the most critical differences between treated and baseline samples were seen for selenoprotein P (SELENOP) and selenoalbumin after administration with MSC (p = 5.8 × 10-4) and SeMet (p = 6.8 × 10-5), respectively. Notably, selenosugar-1 was detected in all low-molecular-weight plasma fractions following treatment, particularly with MSC. Two different chromatographic approaches and spiking experiments demonstrated that about 45% of that increase in SELENOP levels (to ~ 8.8 mg L-1) with SeMet is likely due to the non-specific incorporation of SeMet into the SELENOP affinity fraction. To the authors' knowledge, this has not been reported to date. Therefore, SELENOP is probably part of both the regulated (55%) and non-regulated (45%) Se pools after SeMet administration, whereas SS and MSC mainly contribute to the regulated one.


Assuntos
Neoplasias , Compostos de Selênio , Selênio , Humanos , Selenometionina , Neoplasias/tratamento farmacológico , Biomarcadores
2.
Dalton Trans ; 53(31): 13044-13054, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39028324

RESUMO

The hyphenation of HPLC with its high separation ability and ICP-MS with its excellent sensitivity, allows the analysis of Pt drugs in biological samples at the low nanomolar concentration levels. On the other hand, LC-MS provides molecular structural confirmation for each species. Using a combination of these methods, we have investigated the speciation of the photoactive anticancer complex diazido Pt(IV) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] (FM-190) in aqueous solution and biofluids at single-digit nanomolar concentrations before and after irradiation. FM-190 displays high stability in human blood plasma in the dark at 37 °C. Interestingly, the polyhydroxido species [{PtIV(py)2(OH)4} + Na]+ and [{PtIV(py)2(N3)(OH)3} + Na]+ resulting from the replacement of azido ligands, as determined by LC-MS, were the major products after photoirradiation of FM-190 with blue light (463 nm). This finding suggests that such photosubstituted Pt(IV) tri- and tetra-hydroxido species could play important roles in the biological activity of this anticancer complex. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations show that these Pt(IV) species arising from FM-190 in aqueous media can be formed directly from a singlet excited state. The results highlight how speciation analysis (metallomics) can shed light on photoactivation pathways for FM-190 and formation of potential excited-state pharmacophores. The ability to detect and identify photoproducts at physiologically-relevant concentrations in cells and tissues will be important for preclinical development studies of this class of photoactivatable platinum drugs.


Assuntos
Antineoplásicos , Oxirredução , Processos Fotoquímicos , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/síntese química , Luz , Azidas/química , Platina/química , Estrutura Molecular , Complexos de Coordenação/química , Complexos de Coordenação/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA