Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Chem Inf Model ; 62(5): 1259-1267, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35192366

RESUMO

Therapeutic peptides offer potential advantages over small molecules in terms of selectivity, affinity, and their ability to target "undruggable" proteins that are associated with a wide range of pathologies. Despite their importance, current molecular design capabilities that inform medicinal chemistry decisions on peptide programs are limited. More specifically, there are unmet needs for structure-activity relationship (SAR) analysis and visualization of linear, cyclic, and cross-linked peptides containing non-natural motifs, which are widely used in drug discovery. To bridge this gap, we developed PepSeA (Peptide Sequence Alignment and Visualization), an open-source, freely available package of sequence-based tools (https://github.com/Merck/PepSeA). PepSeA enables multiple sequence alignment of non-natural amino acids and enhanced visualization with the hierarchical editing language for macromolecules (HELM). Via stepwise SAR analysis of a ChEMBL peptide data set, we demonstrate the utility of PepSeA to accelerate decision making in lead optimization campaigns in pharmaceutical setting. PepSeA represents an initial attempt to expand cheminformatics capabilities for therapeutic peptides and to enable rapid and more efficient design-make-test cycles.


Assuntos
Peptídeos , Proteínas , Sequência de Aminoácidos , Quimioinformática , Peptídeos/química , Alinhamento de Sequência
2.
Bioorg Med Chem ; 28(1): 115192, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837897

RESUMO

Identification of purposeful chemical matter on a broad range of drug targets is of high importance to the pharmaceutical industry. However, disease-relevant but more complex hit-finding plans require flexibility regarding the subset of the compounds that we screen. Herein we describe a strategy to design high-quality small molecule screening subsets of two different sizes to cope with a rapidly changing early discovery portfolio. The approach taken balances chemical tractability, chemical diversity and biological target coverage. Furthermore, using surveys, we actively involved chemists within our company in the selection process of the diversity decks to ensure current medicinal chemistry principles were incorporated. The chemist surveys revealed that not all published PAINS substructure alerts are considered productive by the medicinal chemistry community and in agreement with previously published results from other institutions, QED scores tracked quite well with chemists' notions of chemical attractiveness.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/química , Algoritmos , Indústria Farmacêutica , Ensaios de Triagem em Larga Escala
3.
Nat Chem Biol ; 11(12): 958-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479441

RESUMO

High-throughput screening (HTS) is an integral part of early drug discovery. Herein, we focused on those small molecules in a screening collection that have never shown biological activity despite having been exhaustively tested in HTS assays. These compounds are referred to as 'dark chemical matter' (DCM). We quantified DCM, validated it in quality control experiments, described its physicochemical properties and mapped it into chemical space. Through analysis of prospective reporter-gene assay, gene expression and yeast chemogenomics experiments, we evaluated the potential of DCM to show biological activity in future screens. We demonstrated that, despite the apparent lack of activity, occasionally these compounds can result in potent hits with unique activity and clean safety profiles, which makes them valuable starting points for lead optimization efforts. Among the identified DCM hits was a new antifungal chemotype with strong activity against the pathogen Cryptococcus neoformans but little activity at targets relevant to human safety.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Antifúngicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 27(3): 653-657, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011216

RESUMO

Drug discovery programs often face challenges to obtain sufficient duration of action of the drug (i.e. seek longer half-lives). If the pharmacodynamic response is driven by free plasma concentration of the drug then extending the plasma drug concentration is a valid approach. Half-life is dependent on the volume of distribution, which in turn can be dependent upon the ionization state of the molecule. Basic compounds tend to have a higher volume of distribution leading to longer half-lives. However, it has been shown that bases may also have higher promiscuity. In this work, we describe an analysis of in vitro pharmacological profiling and toxicology data investigating the role of primary, secondary, and tertiary amines in imparting promiscuity and thus off-target toxicity. Primary amines are found to be less promiscuous in in vitro assays and have improved profiles in in vivo toxicology studies compared to secondary and tertiary amines.


Assuntos
Aminas/química , Aminas/metabolismo , Aminas/farmacocinética , Aminas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Meia-Vida , Células Hep G2 , Humanos , Concentração Inibidora 50 , Ligação Proteica , Relação Estrutura-Atividade
5.
Drug Discov Today Technol ; 23: 69-74, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28647088

RESUMO

The term dark chemical matter (DCM) was recently introduced for those molecules in a screening collection that have never shown any substantial biological activity despite having been tested in hundreds of high-throughput assays. It was suggested that, if hits emerge from this compound pool in future screening campaigns, they should be prioritized due to their exquisite selectivity profile. In this article we define DCM at our company and describe on-going efforts to shed light on the bioactivity of these apparently silent compounds, with an emphasis on multi-parametric profiling methods. It is also demonstrated that compounds that are dark within one institution might be found active in another, but typically show the foretold selectivity.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos
6.
J Chem Inf Model ; 56(2): 390-8, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898267

RESUMO

Molecular profiling efforts aim at characterizing the biological actions of small molecules by screening them in hundreds of different biochemical and/or cell-based assays. Together, these assays yield a rich data landscape of target-based and phenotypic effects of the tested compounds. However, submitting an entire compound library to a molecular profiling panel can easily become cost-prohibitive. Here, we make use of historical screening assays to create comprehensive bioactivity profiles for more than 300 000 small molecules. These bioactivity profiles, termed PubChem high-throughput screening fingerprints (PubChem HTSFPs), report small molecule activities in 243 different PubChem bioassays. Although the assays originate from originally independently pursued drug or probe discovery projects, we demonstrate their value as molecular signatures when used in combination. We use these PubChem HTSFPs as molecular descriptors in hit expansion experiments for 33 different targets and phenotypes, showing that, on average, they lead to 27 times as many hits in a set of 1000 chosen molecules as a random screening subset of the same size (average ROC score: 0.82). Moreover, we demonstrate that PubChem HTSFPs retrieve hits that are structurally diverse and distinct from active compounds retrieved by chemical similarity-based hit expansion methods. PubChem HTSFPs are made freely available for the chemical biology research community.


Assuntos
Bioensaio , Ensaios de Triagem em Larga Escala
7.
J Chem Inf Model ; 55(5): 956-62, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25915687

RESUMO

High Throughput Screening (HTS) is a common approach in life sciences to discover chemical matter that modulates a biological target or phenotype. However, low assay throughput, reagents cost, or a flowchart that can deal with only a limited number of hits may impair screening large numbers of compounds. In this case, a subset of compounds is assayed, and in silico models are utilized to aid in iterative screening design, usually to expand around the found hits and enrich subsequent rounds for relevant chemical matter. However, this may lead to an overly narrow focus, and the diversity of compounds sampled in subsequent iterations may suffer. Active learning has been recently successfully applied in drug discovery with the goal of sampling diverse chemical space to improve model performance. Here we introduce a robust and straightforward iterative screening protocol based on naïve Bayes models. Instead of following up on the compounds with the highest scores in the in silico model, we pursue compounds with very low but positive values. This includes unique chemotypes of weakly active compounds that enhance the applicability domain of the model and increase the cumulative hit rates. We show in a retrospective application to 81 Novartis assays that this protocol leads to consistently higher compound and scaffold hit rates compared to a standard expansion around hits or an active learning approach. We recommend using the weak reinforcement strategy introduced herein for iterative screening workflows.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Aprendizado de Máquina , Algoritmos , Teorema de Bayes , Simulação por Computador
8.
J Chem Inf Model ; 53(3): 692-703, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23461561

RESUMO

Virtual screening using bioactivity profiles has become an integral part of currently applied hit finding methods in pharmaceutical industry. However, a significant drawback of this approach is that it is only applicable to compounds that have been biologically tested in the past and have sufficient activity annotations for meaningful profile comparisons. Although bioactivity data generated in pharmaceutical institutions are growing on an unprecedented scale, the number of biologically annotated compounds still covers only a minuscule fraction of chemical space. For a newly synthesized compound or an isolated natural product to be biologically characterized across multiple assays, it may take a considerable amount of time. Consequently, this chemical matter will not be included in virtual screening campaigns based on bioactivity profiles. To overcome this problem, we herein introduce bioturbo similarity searching that uses chemical similarity to map molecules without biological annotations into bioactivity space and then searches for biologically similar compounds in this reference system. In benchmark calculations on primary screening data, we demonstrate that our approach generally achieves higher hit rates and identifies structurally more diverse compounds than approaches using chemical information only. Furthermore, our method is able to discover hits with novel modes of inhibition that traditional 2D and 3D similarity approaches are unlikely to discover. Test calculations on a set of natural products reveal the practical utility of the approach for identifying novel and synthetically more accessible chemical matter.


Assuntos
Algoritmos , Ensaios de Triagem em Larga Escala/métodos , Benchmarking , Mineração de Dados , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Mapeamento de Peptídeos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Interface Usuário-Computador
9.
J Chem Inf Model ; 52(12): 3138-43, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23186159

RESUMO

Compound series with different core structures that contain pairs of analogs with corresponding substitution patterns and similar activity represent structure-activity relationship (SAR) transfer events. On the basis of the matched molecular pair (MMP) formalism and linear regression analysis of compound potencies, a general approach is introduced for the identification of SAR transfer series (SAR-TS) and SAR-TS with regular potency progression (SAR-TS-RP). We have systematically extracted such series from public domain compound data and analyzed their size distribution and structural characteristics. More than 900 SAR-TS and 500 SAR-TS-RP with high-confidence potency annotations were identified in various compound activity classes. These series provide a substantial knowledge base for the analysis and prediction of SAR transfer and are made publicly available.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Relação Estrutura-Atividade
10.
J Chem Inf Model ; 52(7): 1769-76, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22657271

RESUMO

We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Bibliotecas de Moléculas Pequenas/química , Estatística como Assunto , Relação Estrutura-Atividade , Antimaláricos/química , Automação , Estrutura Molecular
11.
J Chem Inf Model ; 52(4): 935-42, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22436016

RESUMO

The transfer of SAR information from one analog series to another is a difficult, yet highly attractive task in medicinal chemistry. At present, the evaluation of SAR transfer potential from a data mining perspective is still in its infancy. Only recently, a first computational approach has been introduced to evaluate SAR transfer events. Here, a substructure relationship-based molecular network representation has been used as a starting point to systematically identify SAR transfer series in large compound data sets. For this purpose, a methodology is introduced that consists of two stages. For graph mining, an algorithm has been designed that extracts all parallel series from compound data sets. A parallel series is formed by two series of analogs with different core structures but pairwise corresponding substitution patterns. The SAR transfer potential of identified parallel series is then evaluated using a scoring function that emphasizes corresponding potency progression over many analog pairs and large potency ranges. The substructure relationship-based molecular network in combination with the graph mining algorithm currently represents the only generally applicable approach to systematically detect SAR transfer events in large compound data sets. The combined approach has been evaluated on a large number of compound data sets and shown to systematically identify SAR transfer series.


Assuntos
Algoritmos , Antitrombinas/química , Mineração de Dados , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Trombina/química , Química Farmacêutica , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Descoberta de Drogas , Humanos , Ligação Proteica , Projetos de Pesquisa , Trombina/antagonistas & inibidores
12.
J Chem Inf Model ; 51(8): 1857-66, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21774471

RESUMO

A challenging practical problem in medicinal chemistry is the transfer of SAR information from one chemical series to another. Currently, there are no computational methods available to rationalize or support this process. Herein, we present a data mining approach that enables the identification of alternative analog series with different core structures, corresponding substitution patterns, and comparable potency progression. Scaffolds can be exchanged between these series and new analogs suggested that incorporate preferred R-groups. The methodology can be applied to search for alternative analog series if one series is known or, alternatively, to systematically assess SAR transfer potential in compound databases.


Assuntos
Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Preparações Farmacêuticas/análise , Software , Algoritmos , Simulação por Computador , Mineração de Dados , Bases de Dados Factuais , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Químicos , Estrutura Molecular , Preparações Farmacêuticas/química , Proteínas/antagonistas & inibidores , Proteínas/química , Proteínas/metabolismo , Relação Estrutura-Atividade
13.
J Chem Inf Model ; 51(10): 2467-73, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21902278

RESUMO

Benchmark calculations are essential for the evaluation of virtual screening (VS) methods. Typically, classes of known active compounds taken from the medicinal chemistry literature are divided into reference molecules (search templates) and potential hits that are added to background databases assumed to consist of compounds not sharing this activity. Then VS calculations are carried out, and the recall of known active compounds is determined. However, conventional benchmarking is affected by a number of problems that reduce its value for method evaluation. In addition to often insufficient statistical validation and the lack of generally accepted evaluation standards, the artificial nature of typical benchmark settings is often criticized. Retrospective benchmark calculations generally overestimate the potential of VS methods and do not scale with their performance in prospective applications. In order to provide additional opportunities for benchmarking that more closely resemble practical VS conditions, we have designed a publicly available compound database (DB) of reproducible virtual screens (REPROVIS-DB) that organizes information from successful ligand-based VS applications including reference compounds, screening databases, compound selection criteria, and experimentally confirmed hits. Using the currently available 25 hand-selected compound data sets, one can attempt to reproduce successful virtual screens with other than the originally applied methods and assess their potential for practical applications.


Assuntos
Benchmarking , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos/métodos , Interface Usuário-Computador , Ligantes , Reprodutibilidade dos Testes
14.
J Chem Inf Model ; 51(2): 258-66, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21275393

RESUMO

An activity landscape model of a compound data set can be rationalized as a graphical representation that integrates molecular similarity and potency relationships. Activity landscape representations of different design are utilized to aid in the analysis of structure-activity relationships and the selection of informative compounds. Activity landscape models reported thus far focus on a single target (i.e., a single biological activity) or at most two targets, giving rise to selectivity landscapes. For compounds active against more than two targets, landscapes representing multitarget activities are difficult to conceptualize and have not yet been reported. Herein, we present a first activity landscape design that integrates compound potency relationships across multiple targets in a formally consistent manner. These multitarget activity landscapes are based on a general activity cliff classification scheme and are visualized in graph representations, where activity cliffs are represented as edges. Furthermore, the contributions of individual compounds to structure-activity relationship discontinuity across multiple targets are monitored. The methodology has been applied to derive multitarget activity landscapes for compound data sets active against different target families. The resulting landscapes identify single-, dual-, and triple-target activity cliffs and reveal the presence of hierarchical cliff distributions. From these multitarget activity landscapes, compounds forming complex activity cliffs can be readily selected.


Assuntos
Gráficos por Computador , Mineração de Dados/métodos , Descoberta de Drogas , Relação Estrutura-Atividade
15.
J Chem Inf Model ; 50(7): 1248-56, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20608746

RESUMO

Applying the concept of matched molecular pairs, we have systematically analyzed the ability of defined chemical changes to introduce activity cliffs. Public domain compound data were systematically screened for matched molecular pairs that were then organized according to chemical transformations they represent and associated potency changes. From vast available chemical transformation space, including both R-group and core substructure changes, approximately 250 nonredundant substitutions were identified that displayed a general tendency to form activity cliffs. These substitutions introduced activity cliffs in the structural context of diverse scaffolds and in compounds active against many different targets. Activity cliff-forming transformations were often rather simple, including replacements of small functional groups. Moreover, in many instances, chemically very similar transformations were identified that had a much lower propensity to form activity cliffs or no detectable cliff potential. Thus, clear preferences emerged for specific transformations. A compendium of substitutions with general activity cliff-forming potential is provided to aid in compound optimization efforts.


Assuntos
Sistemas de Liberação de Medicamentos , Modelos Biológicos , Ligantes , Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/classificação , Estrutura Molecular , Relação Estrutura-Atividade
16.
J Chem Inf Model ; 50(1): 68-78, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20053000

RESUMO

We introduce SARANEA, an open-source Java application for interactive exploration of structure-activity relationship (SAR) and structure-selectivity relationship (SSR) information in compound sets of any source. SARANEA integrates various SAR and SSR analysis functions and utilizes a network-like similarity graph data structure for visualization. The program enables the systematic detection of activity and selectivity cliffs and corresponding key compounds across multiple targets. Advanced SAR analysis functions implemented in SARANEA include, among others, layered chemical neighborhood graphs, cliff indices, selectivity trees, editing functions for molecular networks and pathways, bioactivity summaries of key compounds, and markers for bioactive compounds having potential side effects. We report the application of SARANEA to identify SAR and SSR determinants in different sets of serine protease inhibitors. It is found that key compounds can influence SARs and SSRs in rather different ways. Such compounds and their SAR/SSR characteristics can be systematically identified and explored using SARANEA. The program and source code are made freely available under the GNU General Public License.


Assuntos
Mineração de Dados/métodos , Bases de Dados Factuais , Software , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/efeitos adversos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Software/economia , Relação Estrutura-Atividade , Especificidade por Substrato
17.
J Chem Inf Model ; 50(11): 1935-40, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-20961115

RESUMO

The identification of molecular descriptors that contain compound class-specific information is of high relevance in chemoinformatics. A generally applicable way to identify such descriptors is to determine and compare their information content in a given compound activity class and in large databases where the vast majority of compounds do not have the desired activity. For this purpose, the Shannon entropy concept from information theory can in principle be employed. However, previous adaptations of this concept for descriptor profiling are insufficient to select discriminatory descriptors for data sets that dramatically differ in size. Therefore, we introduce a methodology to reliably select such descriptors by transforming the previously introduced differential Shannon entropy formalism into mutual information analysis, another concept from information theory. The newly introduced approach is evaluated by descriptor ranking and correlation analysis on 168 compound activity classes.


Assuntos
Química/métodos , Informática/métodos , Algoritmos , Bases de Dados Factuais
18.
J Chem Inf Model ; 49(10): 2155-67, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19780576

RESUMO

Support vector machine (SVM) calculations combining protein and small molecule information have been applied to identify ligands for simulated orphan targets (i.e., targets for which no ligands were available). The combination of protein and ligand information was facilitated through the design of target-ligand kernel functions that account for pairwise ligand and target similarity. The design and biological information content of such kernel functions was expected to play a major role for target-directed ligand prediction. Therefore, a variety of target-ligand kernels were implemented to capture different types of target information including sequence, secondary structure, tertiary structure, biophysical properties, ontologies, or structural taxonomy. These kernels were tested in ligand predictions for simulated orphan targets in two target protein systems characterized by the presence of different intertarget relationships. Surprisingly, although there were target- and set-specific differences in prediction rates for alternative target-ligand kernels, the performance of these kernels was overall similar and also similar to SVM linear combinations. Test calculations designed to better understand possible reasons for these observations revealed that ligand information provided by nearest neighbors of orphan targets significantly influenced SVM performance, much more so than the inclusion of protein information. As long as ligands of closely related neighbors of orphan targets were available for SVM learning, orphan target ligands could be well predicted, regardless of the type and sophistication of the kernel function that was used. These findings suggest simplified strategies for SVM-based ligand prediction for orphan targets.


Assuntos
Inteligência Artificial , Proteínas/metabolismo , Sequência de Aminoácidos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas/química , Especificidade por Substrato
19.
ACS Med Chem Lett ; 10(1): 56-61, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655947

RESUMO

Access to high quality photoaffinity probe molecules is often constrained by synthetic limitations related to diazirine installation. A survey of recently published photoaffinity probe syntheses identified the Suzuki-Miyaura (S-M) coupling reaction, ubiquitous in drug discovery, as being underutilized to incorporate diazirines. To test whether advances in modern cross-coupling catalysis might enable efficient S-M couplings tolerant of the diazirine moiety, a fragment-based screening approach was employed. A model S-M coupling reaction was screened under various conditions in the presence of an aromatic diazirine fragment. This screen identified reaction conditions that gave good yields of S-M coupling product while minimally perturbing the diazirine reporter fragment. These conditions were found to be highly scalable and exhibited broad scope when applied to a chemistry informer library of 24 pharmaceutically relevant aryl boron pinacol esters. Furthermore, these conditions were used to synthesize a known diazirine-containing probe molecule with improved synthetic efficiency.

20.
SLAS Discov ; 23(6): 585-596, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29547351

RESUMO

Screening against a disease-relevant phenotype to identify compounds that change the outcome of biological pathways, rather than just the activity of specific targets, offers an alternative approach to find modulators of disease characteristics. However, in pain research, use of in vitro phenotypic screens has been impeded by the challenge of sourcing relevant neuronal cell types in sufficient quantity and developing functional end-point measurements with a direct disease link. To overcome these hurdles, we have generated human induced pluripotent stem cell (hiPSC)-derived sensory neurons at a robust production scale using the concept of cryopreserved "near-assay-ready" cells to decouple complex cell production from assay development and screening. hiPSC sensory neurons have then been used for development of a 384-well veratridine-evoked calcium flux assay. This functional assay of neuronal excitability was validated for phenotypic relevance to pain and other hyperexcitability disorders through screening a small targeted validation compound subset. A 2700-compound chemogenomics screen was then conducted to profile the range of target-based mechanisms able to inhibit veratridine-evoked excitability. This report presents the assay development, validation, and screening data. We conclude that high-throughput-compatible pain-relevant phenotypic screening with hiPSC sensory neurons is feasible and ready for application for the identification of new targets, pathways, mechanisms of action, and compounds for modulating neuronal excitability.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Dor/patologia , Células Receptoras Sensoriais/citologia , Células Cultivadas , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA