Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080066

RESUMO

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Passiva , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/patologia , Feminino , Centro Germinativo/patologia , Centro Germinativo/virologia , Macaca mulatta , Masculino , Linfócitos T Auxiliares-Indutores/patologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
3.
Trends Immunol ; 44(1): 7-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470826

RESUMO

The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.


Assuntos
Genes de Imunoglobulinas , Mutação em Linhagem Germinativa , Animais , Humanos , Genes de Imunoglobulinas/genética , Imunidade Humoral/genética , Evolução Biológica , Células Germinativas , Mamíferos
4.
Genome Res ; 32(4): 791-804, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361626

RESUMO

An important challenge in vaccine development is to figure out why a vaccine succeeds in some individuals and fails in others. Although antibody repertoires hold the key to answering this question, there have been very few personalized immunogenomics studies so far aimed at revealing how variations in immunoglobulin genes affect a vaccine response. We conducted an immunosequencing study of 204 calves vaccinated against bovine respiratory disease (BRD) with the goal to reveal variations in immunoglobulin genes and somatic hypermutations that impact the efficacy of vaccine response. Our study represents the largest longitudinal personalized immunogenomics study reported to date across all species, including humans. To analyze the generated data set, we developed an algorithm for identifying variations of the immunoglobulin genes (as well as frequent somatic hypermutations) that affect various features of the antibody repertoire and titers of neutralizing antibodies. In contrast to relatively short human antibodies, cattle have a large fraction of ultralong antibodies that have opened new therapeutic opportunities. Our study reveals that ultralong antibodies are a key component of the immune response against the costliest disease of beef cattle in North America. The detected variants of the cattle immunoglobulin genes, which are implicated in the success/failure of the BRD vaccine, have the potential to direct the selection of individual cattle for ongoing breeding programs.


Assuntos
Doenças dos Bovinos , Vacinas , Animais , Anticorpos , Bovinos , Doenças dos Bovinos/prevenção & controle , América do Norte , Vacinas/genética
5.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38478393

RESUMO

SUMMARY: Knowledge of immunoglobulin and T cell receptor encoding genes is derived from high-quality genomic sequencing. High-throughput sequencing is delivering large volumes of data, and precise, high-throughput approaches to annotation are needed. Digger is an automated tool that identifies coding and regulatory regions of these genes, with results comparable to those obtained by current expert curational methods. AVAILABILITY AND IMPLEMENTATION: Digger is published under open source license at https://github.com/williamdlees/Digger and is available as a Python package and a Docker container.


Assuntos
Receptores de Antígenos de Linfócitos T , Software , Receptores de Antígenos de Linfócitos T/genética , Mapeamento Cromossômico , Imunoglobulinas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
J Immunol ; 210(10): 1607-1619, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027017

RESUMO

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.


Assuntos
Regiões Determinantes de Complementaridade , Humanos , Regiões Determinantes de Complementaridade/genética , Sequência de Bases
7.
Nucleic Acids Res ; 51(16): e86, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548401

RESUMO

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).


Assuntos
Genômica , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Alelos , Genótipo , Receptores de Antígenos de Linfócitos B/genética , Cadeias Pesadas de Imunoglobulinas/genética
8.
Genes Immun ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844673

RESUMO

Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of the IG loci has hindered use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we use long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n = 36), representing the first comprehensive description of IGK haplotype variation. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and novel structural variants harboring functional IGKV genes. Among 47 functional IGKV genes, we identify 145 alleles, 67 of which were not previously curated. We report inter-population differences in allele frequencies for 10 IGKV genes, including alleles unique to specific populations within this dataset. We identify haplotypes carrying signatures of gene conversion that associate with SNV enrichment in the IGK distal region, and a haplotype with an inversion spanning the proximal and distal regions. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.

10.
Genes Immun ; 24(1): 21-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539592

RESUMO

Immunoglobulins (IGs), crucial components of the adaptive immune system, are encoded by three genomic loci. However, the complexity of the IG loci severely limits the effective use of short read sequencing, limiting our knowledge of population diversity in these loci. We leveraged existing long read whole-genome sequencing (WGS) data, fosmid technology, and IG targeted single-molecule, real-time (SMRT) long-read sequencing (IG-Cap) to create haplotype-resolved assemblies of the IG Lambda (IGL) locus from 6 ethnically diverse individuals. In addition, we generated 10 diploid assemblies of IGL from a diverse cohort of individuals utilizing IG-Cap. From these 16 individuals, we identified significant allelic diversity, including 36 novel IGLV alleles. In addition, we observed highly elevated single nucleotide variation (SNV) in IGLV genes relative to IGL intergenic and genomic background SNV density. By comparing SNV calls between our high quality assemblies and existing short read datasets from the same individuals, we show a high propensity for false-positives in the short read datasets. Finally, for the first time, we nucleotide-resolved common 5-10 Kb duplications in the IGLC region that contain functional IGLJ and IGLC genes. Together these data represent a significant advancement in our understanding of genetic variation and population diversity in the IGL locus.


Assuntos
Genes de Imunoglobulinas , Cadeias lambda de Imunoglobulina , Humanos , Cadeias lambda de Imunoglobulina/genética , Genômica , Variação Genética , Nucleotídeos
11.
J Immunol ; 207(7): 1785-1797, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470858

RESUMO

Our previous work has revealed the ability of CD11b to regulate BCR signaling and control autoimmune disease in mice. However, how CD11b regulates the immune response under normal conditions remains unknown. Through the use of a CD11b knockout model on a nonautoimmune background, we demonstrated that CD11b-deficient mice have an elevated Ag-specific humoral response on immunization. Deletion of CD11b resulted in elevated low-affinity and high-affinity IgG Ab and increases in Ag-specific germinal center B cells and plasma cells (PCs). Examination of BCR signaling in CD11b-deficient mice revealed defects in association of negative regulators pLyn and CD22 with the BCR, but increases in colocalizations between positive regulator pSyk and BCR after stimulation. Using a CD11b-reporter mouse model, we identified multiple novel CD11b-expressing B cell subsets that are dynamically altered during immunization. Subsequent experiments using a cell-specific CD11b deletion model revealed this effect to be B cell intrinsic and not altered by myeloid cell CD11b expression. Importantly, CD11b expression on PCs also impacts on BCR repertoire selection and diversity in autoimmunity. These studies describe a novel role for CD11b in regulation of the healthy humoral response and autoimmunity, and reveal previously unknown populations of CD11b-expressing B cell subsets, suggesting a complex function for CD11b in B cells during development and activation.


Assuntos
Linfócitos B/imunologia , Antígeno CD11b/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Autoimunidade , Antígeno CD11b/genética , Células Cultivadas , Humanos , Imunidade Humoral , Imunização , Imunomodulação , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Quinase Syk/metabolismo
12.
Immunol Cell Biol ; 100(7): 497-506, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781330

RESUMO

Reproductive isolation drives the formation of new species, and many genes contribute to this through Dobzhansky-Muller incompatibilities (DMIs). These incompatibilities occur when gene divergence affects loci encoding interacting products such as receptors and their ligands. We suggest here that the nature of vertebrate immunoglobulin (IG) genes must make them prone to DMIs. The genes of these complex loci form functional genes through the process of recombination, giving rise to a repertoire of heterodimeric receptors of incredible diversity. This repertoire, within individuals and within species, must defend against pathogens but must also avoid pathogenic self-reactivity. We suggest that this avoidance of autoimmunity is only achieved through a coordination of evolution between heavy- and light-chain genes, and between these genes and the rest of the genome. Without coordinated evolution, the hybrid offspring of two diverging populations will carry a heavy burden of DMIs, resulting in a loss of fitness. Critical incompatibilities could manifest as incompatibilities between a mother and her divergent offspring. During fetal development, biochemical differences between the parents of hybrid offspring could make their offspring a target of the maternal immune system. This hypothesis was conceived in the light of recent insights into the population genetics of IG genes. This has suggested that antibody genes are probably as susceptible to evolutionary forces as other parts of the genome. Further repertoire studies in human and nonhuman species should now help determine whether antibody genes have been part of the evolutionary forces that drive the development of species.


Assuntos
Especiação Genética , Isolamento Reprodutivo , Animais , Feminino , Genes de Imunoglobulinas , Humanos , Modelos Genéticos , Vertebrados/genética
13.
J Immunol ; 205(4): 915-922, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32591393

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of infections and hundreds of thousands of deaths globally. There are no widely available licensed therapeutics against SARS-CoV-2, highlighting an urgent need for effective interventions. The virus enters host cells through binding of a receptor-binding domain within its trimeric spike glycoprotein to human angiotensin-converting enzyme 2. In this article, we describe the generation and characterization of a panel of murine mAbs directed against the receptor-binding domain. One mAb, 2B04, neutralized wild-type SARS-CoV-2 in vitro with remarkable potency (half-maximal inhibitory concentration of <2 ng/ml). In a murine model of SARS-CoV-2 infection, 2B04 protected challenged animals from weight loss, reduced lung viral load, and blocked systemic dissemination. Thus, 2B04 is a promising candidate for an effective antiviral that can be used to prevent SARS-CoV-2 infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Transfecção , Células Vero
14.
Nucleic Acids Res ; 48(D1): D964-D970, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31566225

RESUMO

High-throughput sequencing of the adaptive immune receptor repertoire (AIRR-seq) is providing unprecedented insights into the immune response to disease and into the development of immune disorders. The accurate interpretation of AIRR-seq data depends on the existence of comprehensive germline gene reference sets. Current sets are known to be incomplete and unrepresentative of the degree of polymorphism and diversity in human and animal populations. A key issue is the complexity of the genomic regions in which they lie, which, because of the presence of multiple repeats, insertions and deletions, have not proved tractable with short-read whole genome sequencing. Recently, tools and methods for inferring such gene sequences from AIRR-seq datasets have become available, and a community approach has been developed for the expert review and publication of such inferences. Here, we present OGRDB, the Open Germline Receptor Database (https://ogrdb.airr-community.org), a public resource for the submission, review and publication of previously unknown receptor germline sequences together with supporting evidence.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica , Receptores Imunológicos/genética , Genômica/métodos , Humanos , Software , Navegador
15.
Nucleic Acids Res ; 48(D1): D1051-D1056, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31602484

RESUMO

VDJbase is a publicly available database that offers easy searching of data describing the complete sets of gene sequences (genotypes and haplotypes) inferred from adaptive immune receptor repertoire sequencing datasets. VDJbase is designed to act as a resource that will allow the scientific community to explore the genetic variability of the immunoglobulin (Ig) and T cell receptor (TR) gene loci. It can also assist in the investigation of Ig- and TR-related genetic predispositions to diseases. Our database includes web-based query and online tools to assist in visualization and analysis of the genotype and haplotype data. It enables users to detect those alleles and genes that are significantly over-represented in a particular population, in terms of genotype, haplotype and gene expression. The database website can be freely accessed at https://www.vdjbase.org/, and no login is required. The data and code use creative common licenses and are freely downloadable from https://bitbucket.org/account/user/yaarilab/projects/GPHP.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genótipo , Haplótipos , Receptores Imunológicos/genética , Recombinação V(D)J , Humanos , Anotação de Sequência Molecular , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Software , Design de Software , Navegador , Fluxo de Trabalho
16.
J Allergy Clin Immunol ; 145(4): 1219-1230, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31838046

RESUMO

BACKGROUND: Unexpected allergic reactions to peanut are the most common cause of fatal food-related anaphylaxis. Mechanisms underlying the variable severity of peanut-allergic reactions remain unclear. OBJECTIVES: We sought to expand mechanistic understanding of reaction severity in peanut allergy. METHODS: We performed an integrated transcriptomic and epigenomic study of peanut-allergic children as they reacted in vivo during double-blind, placebo-controlled peanut challenges. We integrated whole-blood transcriptome and CD4+ T-cell epigenome profiles to identify molecular signatures of reaction severity (ie, how severely a peanut-allergic child reacts when exposed to peanut). A threshold-weighted reaction severity score was calculated for each subject based on symptoms experienced during peanut challenge and the eliciting dose. Through linear mixed effects modeling, network construction, and causal mediation analysis, we identified genes, CpGs, and their interactions that mediate reaction severity. Findings were replicated in an independent cohort. RESULTS: We identified 318 genes with changes in expression during the course of reaction associated with reaction severity, and 203 CpG sites with differential DNA methylation associated with reaction severity. After replicating these findings in an independent cohort, we constructed interaction networks with the identified peanut severity genes and CpGs. These analyses and leukocyte deconvolution highlighted neutrophil-mediated immunity. We identified NFKBIA and ARG1 as hubs in the networks and 3 groups of interacting key node CpGs and peanut severity genes encompassing immune response, chemotaxis, and regulation of macroautophagy. In addition, we found that gene expression of PHACTR1 and ZNF121 causally mediates the association between methylation at corresponding CpGs and reaction severity, suggesting that methylation may serve as an anchor upon which gene expression modulates reaction severity. CONCLUSIONS: Our findings enhance current mechanistic understanding of the genetic and epigenetic architecture of reaction severity in peanut allergy.


Assuntos
Anafilaxia/genética , Linfócitos T CD4-Positivos/fisiologia , Hipersensibilidade a Amendoim/genética , Adolescente , Alérgenos/imunologia , Arachis/imunologia , Criança , Estudos de Coortes , Metilação de DNA , Progressão da Doença , Epigênese Genética , Feminino , Redes Reguladoras de Genes , Humanos , Imunidade/genética , Imunização , Masculino , Transcriptoma
17.
Trends Immunol ; 38(7): 459-470, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539189

RESUMO

Antibodies (Abs) produced by immunoglobulin (IG) genes are the most diverse proteins expressed in humans. While part of this diversity is generated by recombination during B-cell development and mutations during affinity maturation, the germ-line IG loci are also diverse across human populations and ethnicities. Recently, proof-of-concept studies have demonstrated genotype-phenotype correlations between specific IG germ-line variants and the quality of Ab responses during vaccination and disease. However, the functional consequences of IG genetic variation in Ab function and immunological outcomes remain underexplored. In this opinion article, we outline interconnections between IG genomic diversity and Ab-expressed repertoires and structure. We further propose a strategy for integrating IG genotyping with functional Ab profiling data as a means to better predict and optimize humoral responses in genetically diverse human populations, with immediate implications for personalized medicine.


Assuntos
Anticorpos/genética , Linfócitos B/imunologia , Genes de Imunoglobulinas , Genética Populacional , Mutação em Linhagem Germinativa , Imunidade Humoral , Alelos , Animais , Anticorpos/classificação , Linfócitos B/microbiologia , Linfócitos B/parasitologia , Linfócitos B/virologia , Expressão Gênica , Estudos de Associação Genética , Loci Gênicos , Genótipo , Humanos , Medicina de Precisão
18.
Brain ; 142(3): 647-661, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698680

RESUMO

Cell-permeable formulations of metabolites, such as fumaric acid esters, have been used as highly effective immunomodulators in patients with multiple sclerosis and yet their mechanism of action remains elusive. Since fumaric acid esters are metabolites, and cell metabolism is highly intertwined with the epigenetic regulation of gene expression, we investigated whether this metabolic-epigenetic interplay could be leveraged for therapeutic purposes. To this end we recruited 47 treatment-naïve and 35 fumaric acid ester-treated patients with multiple sclerosis, as well as 16 glatiramer acetate-treated patients as a non-metabolite treatment control. Here we identify a significant immunomodulatory effect of fumaric acid esters on the expression of the brain-homing chemokine receptor CCR6 in CD4 and CD8 T cells of patients with multiple sclerosis, which include T helper-17 and T cytotoxic-17 cells. We report differences in DNA methylation of CD4 T cells isolated from untreated and treated patients with multiple sclerosis, using the Illumina EPIC 850K BeadChip. We first demonstrate that Krebs cycle intermediates, such as fumaric acid esters, have a significantly higher impact on epigenome-wide DNA methylation changes in CD4 T cells compared to amino-acid polymers such as glatiramer acetate. We then define a fumaric acid ester treatment-specific hypermethylation effect on microRNA MIR-21, which is critical for the differentiation of T helper-17 cells. This hypermethylation effect was attributed to the subpopulation of T helper-17 cells using a decomposition analysis and was further validated in an independent prospective cohort of seven patients before and after treatment with fumaric acid esters. In vitro treatment of CD4 and CD8 T cells with fumaric acid esters supported a direct and dose-dependent effect on DNA methylation at the MIR-21 promoter. Finally, the upregulation of miR-21 transcripts and CCR6 expression was inhibited if CD4 or CD8 T cells stimulated under T helper-17 or T cytotoxic-17 polarizing conditions were treated with fumaric acid esters in vitro. These data collectively define a direct link between fumaric acid ester treatment and hypermethylation of the MIR-21 locus in both CD4 and CD8 T cells and suggest that the immunomodulatory effect of fumaric acid esters in multiple sclerosis is at least in part due to the epigenetic regulation of the brain-homing CCR6+ CD4 and CD8 T cells.


Assuntos
Fumaratos/metabolismo , Esclerose Múltipla/metabolismo , Adulto , Encéfalo/imunologia , Encéfalo/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Fumaratos/farmacologia , Regulação da Expressão Gênica/genética , Acetato de Glatiramer/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Estudos Prospectivos , Linfócitos T/metabolismo , Linfócitos T/fisiologia
20.
J Proteome Res ; 18(4): 1582-1594, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807179

RESUMO

Environmental pollution contributes to fatty liver disease pathogenesis. Polychlorinated biphenyl (PCB) exposures have been associated with liver enzyme elevation and suspected steatohepatitis in cohort studies. Male mice treated with the commercial PCB mixture, Aroclor 1260 (20 mg/kg), and fed high fat diet (HFD) for 12 weeks developed steatohepatitis. Receptor-based modes of action including inhibition of the epidermal growth factor (EGF) receptor were previously proposed, but other mechanisms likely exist. Objectives were to identify and validate the pathways, transcription factors, and mechanisms responsible for the steatohepatitis associated with PCB and HFD coexposures. Comparative proteomics analysis was performed in archived mouse liver samples from the aforementioned chronic exposure study. Pathway and transcription factor analysis (TFA) was performed, and selected results were validated. Liver proteomics detected 1103 unique proteins. Aroclor 1260 upregulated 154 and downregulated 93 of these. Aroclor 1260 + HFD coexposures affected 55 pathways including glutathione metabolism, intermediary metabolism, and cytoskeletal remodeling. TFA of Aroclor 1260 treatment demonstrated alterations in the function of 42 transcription factors including downregulation of NRF2 and key nuclear receptors previously demonstrated to protect against steatohepatitis (e.g., HNF4α, FXR, PPARα/δ/γ, etc.). Validation studies demonstrated that Aroclor 1260 significantly reduced HNF4α protein levels, while Aroclor 1260 + HFD reduced expression of the HNF4α target gene, albumin, in vivo. Aroclor 1260 attenuated EGF-dependent HNF4α phosphorylation and target gene activation in vitro. Aroclor 1260 reduced levels of NRF2, its target genes, and glutathione in vivo. Aroclor 1260 attenuated EGF-dependent NRF2 upregulation, in vitro. Aroclor 1260 indirectly activated hepatic stellate cells in vitro via induction of hepatocyte-derived TGFß. PCB exposures adversely impacted transcription factors regulating liver protection, function, and fibrosis. PCBs, thus, compromised the liver by reducing its protective responses against nutritional stress to promote diet-induced steatohepatitis. The identified mechanisms by which environmental pollutants influence fatty liver disease pathogenesis require confirmation in humans.


Assuntos
Dieta Hiperlipídica , Fígado , Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados/toxicidade , Proteoma , Animais , Linhagem Celular , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA