Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112943, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37543947

RESUMO

Oligodendrocytes are the sole myelin-producing cells in the central nervous system. Oligodendrocyte number is tightly controlled across diverse brain regions to match local axon type and number, yet the underlying mechanisms remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under physiological conditions, elicits premyelinating oligodendrocyte apoptosis during development. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy functions cell autonomously in the premyelinating oligodendrocyte to trigger cell apoptosis, and it genetically interacts with the TFEB pathway to limit oligodendrocyte number across diverse brain regions. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrogenesis.


Assuntos
Bainha de Mielina , Oligodendroglia , Animais , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Axônios , Apoptose , Autofagia , Diferenciação Celular/fisiologia , Mamíferos
2.
bioRxiv ; 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36712125

RESUMO

Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS: Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA