Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Neurophysiol ; 130(4): 1008-1014, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37701940

RESUMO

The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.


Assuntos
Marcha , Reflexo , Adulto , Humanos , Eletromiografia , Coluna Vertebral , Adaptação Fisiológica , Caminhada , Teste de Esforço
2.
J Neurophysiol ; 125(2): 496-508, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326349

RESUMO

Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of dorsal root ganglia (DRG) neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected. Tactile nerve fibers convey information about many features of haptic interactions, including the force and speed of contact, as well as the texture and shape of the objects being handled. How we perceive these object features is relatively unaffected by the forces and movements we use when interacting with the object. Because signals related to contact events and object properties are mixed in the responses of tactile fibers, our ability to disentangle these different components of our tactile experience implies that they are demultiplexed as they propagate along the neuraxis. To understand how texture and contact mechanics are encoded together by tactile fibers, we studied the activity of multiple neurons recorded simultaneously in the cervical DRG of two anesthetized rhesus monkeys while textured surfaces were applied to the glabrous skin of the fingers and palm using a handheld probe. A transducer at the tip of the textured probe measured contact forces as tactile stimuli were applied at different locations on the finger-pads and palm. We examined how a sample population of DRG neurons encode force and texture and found that firing rates of individual neurons are modulated by both force and texture. In particular, slowly adapting (SA) neurons were more responsive to force than texture, and rapidly adapting (RA) neurons were more responsive to texture than force. Although force could be decoded accurately throughout the entire contact interval, texture signals were most salient during onset and offset phases of the contact interval.NEW & NOTEWORTHY Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of DRG neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected.


Assuntos
Potenciais de Ação , Mecanorreceptores/fisiologia , Percepção do Tato , Adaptação Fisiológica , Animais , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Macaca mulatta , Masculino , Pele/citologia , Pele/inervação , Tato
3.
J Neurophysiol ; 126(6): 2104-2118, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788156

RESUMO

Motor neurons convey information about motor intent that can be extracted and interpreted to control assistive devices. However, most methods for measuring the firing activity of single neurons rely on implanted microelectrodes. Although intracortical brain-computer interfaces (BCIs) have been shown to be safe and effective, the requirement for surgery poses a barrier to widespread use that can be mitigated by instead using noninvasive interfaces. The objective of this study was to evaluate the feasibility of deriving motor control signals from a wearable sensor that can detect residual motor unit activity in paralyzed muscles after chronic cervical spinal cord injury (SCI). Despite generating no observable hand movement, volitional recruitment of motor units below the level of injury was observed across attempted movements of individual fingers and overt wrist and elbow movements. Subgroups of motor units were coactive during flexion or extension phases of the task. Single digit movement intentions were classified offline from the electromyogram (EMG) power [root-mean-square (RMS)] or motor unit firing rates with median classification accuracies >75% in both cases. Simulated online control of a virtual hand was performed with a binary classifier to test feasibility of real-time extraction and decoding of motor units. The online decomposition algorithm extracted motor units in 1.2 ms, and the firing rates predicted the correct digit motion 88 ± 24% of the time. This study provides the first demonstration of a wearable interface for recording and decoding firing rates of motor units below the level of injury in a person with motor complete SCI.NEW & NOTEWORTHY A wearable electrode array and machine learning methods were used to record and decode myoelectric signals and motor unit firing in paralyzed muscles of a person with motor complete tetraplegia. The myoelectric activity and motor unit firing rates were task specific, even in the absence of visible motion, enabling accurate classification of attempted single-digit movements. This wearable system has the potential to enable people with tetraplegia to control assistive devices through movement intent.


Assuntos
Mãos/fisiopatologia , Músculo Esquelético/fisiopatologia , Reabilitação Neurológica/instrumentação , Quadriplegia , Recrutamento Neurofisiológico/fisiologia , Traumatismos da Medula Espinal , Dispositivos Eletrônicos Vestíveis , Adulto , Eletromiografia , Estudos de Viabilidade , Humanos , Aprendizado de Máquina , Masculino , Reabilitação Neurológica/métodos , Quadriplegia/etiologia , Quadriplegia/fisiopatologia , Quadriplegia/reabilitação , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação
4.
Neurobiol Dis ; 121: 286-295, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217521

RESUMO

Motor output maps within primary motor cortex are widely distributed and modified by motor skill learning and neurological injury. Functions that these maps represent after spinal cord injury remain debatable. Moreover, the pattern of reorganization and whether it supports recovery of compromised motor function is not well understood. A deeper understanding of the pathophysiological mechanisms of motor dysfunction after spinal cord injury is necessary to develop and optimize repair strategies. There are three purposes for this review. The first is to synthesize available research on spontaneous reorganization with primary motor cortex following spinal cord injury. The second is to draw on existing evidence from the motor skill learning and brain injury literature to interpret the form and purpose of motor maps. The third purpose is to account for the existing research on intervention-induced reorganization of primary motor cortex following spinal cord injury. We conclude with directions for future work, emphasizing the need for multi-modal investigations that construct maps with both neuroimaging and non-invasive stimulation methods to derive a cohesive understanding of the effects of spinal cord injury on reorganization within primary motor cortex.


Assuntos
Córtex Motor/fisiopatologia , Plasticidade Neuronal , Traumatismos da Medula Espinal/fisiopatologia , Animais , Humanos , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação
5.
J Neurophysiol ; 118(4): 2412-2420, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768745

RESUMO

After paralysis, the disconnection between the cortex and its peripheral targets leads to neuroplasticity throughout the nervous system. However, it is unclear how chronic paralysis specifically impacts cortical oscillations associated with attempted movement of impaired limbs. We hypothesized that µ- (8-13 Hz) and ß- (15-30 Hz) event-related desynchronization (ERD) would be less modulated for individuals with hand paralysis due to cervical spinal cord injury (SCI). To test this, we compared the modulation of ERD from magnetoencephalography (MEG) during attempted and imagined grasping performed by participants with cervical SCI (n = 12) and able-bodied controls (n = 13). Seven participants with tetraplegia were able to generate some electromyography (EMG) activity during attempted grasping, whereas the other five were not. The peak and area of ERD were significantly decreased for individuals without volitional muscle activity when they attempted to grasp compared with able-bodied subjects and participants with SCI,with some residual EMG activity. However, no significant differences were found between subject groups during mentally simulated tasks (i.e., motor imagery) where no muscle activity or somatosensory consequences were expected. These findings suggest that individuals who are unable to produce muscle activity are capable of generating ERD when attempting to move, but the characteristics of this ERD are altered. However, for people who maintain volitional muscle activity after SCI, there are no significant differences in ERD characteristics compared with able-bodied controls. These results provide evidence that ERD is dependent on the level of intact muscle activity after SCI.NEW & NOTEWORTHY Source space MEG was used to investigate sensorimotor cortical oscillations in individuals with SCI. This study provides evidence that individuals with cervical SCI exhibit decreased ERD when they attempt to grasp if they are incapable of generating muscle activity. However, there were no significant differences in ERD between paralyzed and able-bodied participants during motor imagery. These results have important implications for the design and evaluation of new therapies, such as motor imagery and neurofeedback interventions.


Assuntos
Ritmo beta , Sincronização Cortical , Paralisia/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Potencial Evocado Motor , Potenciais Somatossensoriais Evocados , Retroalimentação Fisiológica , Feminino , Força da Mão , Humanos , Masculino , Contração Muscular , Paralisia/etiologia , Traumatismos da Medula Espinal/complicações
6.
J Neurophysiol ; 116(1): 51-60, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27052583

RESUMO

Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee.


Assuntos
Estimulação Elétrica , Gânglios Espinais/fisiologia , Extremidade Inferior/fisiologia , Neurônios Aferentes/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Gatos , Estimulação Elétrica/métodos , Eletrodos Implantados , Nervo Femoral/fisiologia , Isoflurano/farmacologia , Vértebras Lombares , Masculino , Microeletrodos , Nervo Fibular/fisiologia , Nervo Isquiático/fisiologia
7.
Neurourol Urodyn ; 34(1): 65-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24464833

RESUMO

AIMS: Pudendal afferent fibers can be excited using electrical stimulation to evoke reflex bladder activity. While this approach shows promise for restoring bladder function, stimulation of desired pathways, and integration of afferent signals for sensory feedback remains challenging. At sacral dorsal root ganglia (DRG), the convergence of pelvic and pudendal afferent fibers provides a unique location for access to lower urinary tract neurons. Our goal in this study was to demonstrate the potential of microstimulation in sacral DRG for evoking reflex bladder responses. METHODS: Penetrating microelectrode arrays were inserted in the left S1 and S2 DRG of six anesthetized adult male cats. While the bladder volume was held at a level below the leak volume, single and multiple channel stimulation was performed using various stimulation patterns. RESULTS: Reflex bladder excitation was observed in five cats, for stimulation in either S1 or S2 DRG at 1 Hz and 30-33 Hz with a pulse amplitude of 10-50 µA. Bladder relaxation was observed during a few trials. Adjacent electrodes frequently elicited very different responses. CONCLUSIONS: These results demonstrate the potential of low-current microstimulation to recruit reflexive bladder responses. An approach such as this could be integrated with DRG recordings of bladder afferents to provide a closed-loop bladder neuroprosthesis.


Assuntos
Gânglios Espinais/fisiologia , Neurônios Aferentes/fisiologia , Reflexo/fisiologia , Bexiga Urinária/fisiologia , Animais , Gatos , Estimulação Elétrica , Masculino , Microeletrodos , Região Sacrococcígea/fisiologia
8.
Arch Phys Med Rehabil ; 96(11): 2007-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26239302

RESUMO

OBJECTIVE: To investigate the effect of reducing spasticity via onabotulinumtoxin A (Obtx-A) injection on cerebellar activation after chronic stroke during unilateral gripping. DESIGN: Pre-post, case series. SETTING: Outpatient spasticity clinic. PARTICIPANTS: Individuals with chronic spasticity (N=4). INTERVENTIONS: Upper-limb Obtx-A injection. MAIN OUTCOME MEASURES: Functional magnetic resonance imaging (fMRI) was used to measure changes in cerebellar activation before and after upper-limb Obtx-A injection. During fMRI testing, participants performed the same motor task before and after injection, which was 15% and 30% of maximum voluntary isometric gripping measured before Obtx-A injection. RESULTS: After Obtx-A injection, cerebellar activation increased bilaterally during gripping with the paretic hand and during rest. During both pre- and postinjection scans, the paretic hand showed larger cerebellar activation during gripping compared with the nonparetic hand. Cerebellar activation during gripping with the nonparetic hand did not change significantly after Obtx-A injection. CONCLUSIONS: Reducing spasticity via Obtx-A injection may increase cerebellar activation both during gripping tasks with the paretic hand and during rest. To our knowledge, this is the first study that examines changes in cerebellar activation after spasticity treatment with Obtx-A.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Cerebelo/efeitos dos fármacos , Espasticidade Muscular/fisiopatologia , Fármacos Neuromusculares/farmacologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Doença Crônica , Feminino , Força da Mão/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/etiologia , Acidente Vascular Cerebral/complicações , Extremidade Superior/fisiopatologia
9.
J Neuroeng Rehabil ; 12: 85, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26392353

RESUMO

BACKGROUND: Providing neurofeedback (NF) of motor-related brain activity in a biologically-relevant and intuitive way could maximize the utility of a brain-computer interface (BCI) for promoting therapeutic plasticity. We present a BCI capable of providing intuitive and direct control of a video-based grasp. METHODS: Utilizing magnetoencephalography's (MEG) high temporal and spatial resolution, we recorded sensorimotor rhythms (SMR) that were modulated by grasp or rest intentions. SMR modulation controlled the grasp aperture of a stop motion video of a human hand. The displayed hand grasp position was driven incrementally towards a closed or opened state and subjects were required to hold the targeted position for a time that was adjusted to change the task difficulty. RESULTS: We demonstrated that three individuals with complete hand paralysis due to spinal cord injury (SCI) were able to maintain brain-control of closing and opening a virtual hand with an average of 63 % success which was significantly above the average chance rate of 19 %. This level of performance was achieved without pre-training and less than 4 min of calibration. In addition, successful grasp targets were reached in 1.96 ± 0.15 s. Subjects performed 200 brain-controlled trials in approximately 30 min excluding breaks. Two of the three participants showed a significant improvement in SMR indicating that they had learned to change their brain activity within a single session of NF. CONCLUSIONS: This study demonstrated the utility of a MEG-based BCI system to provide realistic, efficient, and focused NF to individuals with paralysis with the goal of using NF to induce neuroplasticity.


Assuntos
Interfaces Cérebro-Computador , Magnetoencefalografia/métodos , Neurorretroalimentação/métodos , Traumatismos da Medula Espinal/reabilitação , Adulto , Feminino , Humanos , Masculino
10.
Lancet ; 381(9866): 557-64, 2013 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-23253623

RESUMO

BACKGROUND: Paralysis or amputation of an arm results in the loss of the ability to orient the hand and grasp, manipulate, and carry objects, functions that are essential for activities of daily living. Brain-machine interfaces could provide a solution to restoring many of these lost functions. We therefore tested whether an individual with tetraplegia could rapidly achieve neurological control of a high-performance prosthetic limb using this type of an interface. METHODS: We implanted two 96-channel intracortical microelectrodes in the motor cortex of a 52-year-old individual with tetraplegia. Brain-machine-interface training was done for 13 weeks with the goal of controlling an anthropomorphic prosthetic limb with seven degrees of freedom (three-dimensional translation, three-dimensional orientation, one-dimensional grasping). The participant's ability to control the prosthetic limb was assessed with clinical measures of upper limb function. This study is registered with ClinicalTrials.gov, NCT01364480. FINDINGS: The participant was able to move the prosthetic limb freely in the three-dimensional workspace on the second day of training. After 13 weeks, robust seven-dimensional movements were performed routinely. Mean success rate on target-based reaching tasks was 91·6% (SD 4·4) versus median chance level 6·2% (95% CI 2·0-15·3). Improvements were seen in completion time (decreased from a mean of 148 s [SD 60] to 112 s [6]) and path efficiency (increased from 0·30 [0·04] to 0·38 [0·02]). The participant was also able to use the prosthetic limb to do skilful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper limb function. No adverse events were reported. INTERPRETATION: With continued development of neuroprosthetic limbs, individuals with long-term paralysis could recover the natural and intuitive command signals for hand placement, orientation, and reaching, allowing them to perform activities of daily living. FUNDING: Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute.


Assuntos
Membros Artificiais , Interfaces Cérebro-Computador , Quadriplegia/terapia , Braço , Feminino , Força da Mão , Humanos , Microeletrodos , Pessoa de Meia-Idade , Desempenho Psicomotor
11.
J Neural Eng ; 21(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38502956

RESUMO

Objective.Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated Platinum/Iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, it is important to note that the effectiveness of stimulation through TES relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures.Approach.We employed a hybrid computational modeling approach to analyze the impact of Injectrode system design parameters on charge delivery and neural response to stimulation. We constructed multiple finite element method models of DRG stimulation, followed by the implementation of multi-compartment models of DRG neurons. By calculating potential distribution during monopolar stimulation, we simulated neural responses using various parameters based on prior acute experiments. Additionally, we developed a canonical monopolar stimulation and full-scale model of bipolar bilateral L5 DRG stimulation, allowing us to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds.Main results.Our findings were in accordance with acute experimental measurements and indicate that the minimally invasive Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity.Significance.The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aßactivation from the undesired Aδ-fiber activation.


Assuntos
Gânglios Espinais , Neurônios , Humanos , Gânglios Espinais/fisiologia , Dor , Estimulação Elétrica , Simulação por Computador
12.
J Spinal Cord Med ; 36(4): 258-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23820142

RESUMO

CONTEXT: Spinal cord injury (SCI) results in a loss of function and sensation below the level of the lesion. Neuroprosthetic technology has been developed to help restore motor and autonomic functions as well as to provide sensory feedback. FINDINGS: This paper provides an overview of neuroprosthetic technology that aims to address the priorities for functional restoration as defined by individuals with SCI. We describe neuroprostheses that are in various stages of preclinical development, clinical testing, and commercialization including functional electrical stimulators, epidural and intraspinal microstimulation, bladder neuroprosthesis, and cortical stimulation for restoring sensation. We also discuss neural recording technologies that may provide command or feedback signals for neuroprosthetic devices. CONCLUSION/CLINICAL RELEVANCE: Neuroprostheses have begun to address the priorities of individuals with SCI, although there remains room for improvement. In addition to continued technological improvements, closing the loop between the technology and the user may help provide intuitive device control with high levels of performance.


Assuntos
Próteses e Implantes , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação , Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Eletromiografia/instrumentação , Eletromiografia/métodos , Retroalimentação Fisiológica , Humanos , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinária/fisiopatologia
13.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595241

RESUMO

Objective.Spinal cord neuromodulation has gained much attention for demonstrating improved motor recovery in people with spinal cord injury, motivating the development of clinically applicable technologies. Among them, transcutaneous spinal cord stimulation (tSCS) is attractive because of its non-invasive profile. Many tSCS studies employ a high-frequency (10 kHz) carrier, which has been reported to reduce stimulation discomfort. However, these claims have come under scrutiny in recent years. The purpose of this study was to determine whether using a high-frequency carrier for tSCS is more comfortable at therapeutic amplitudes, which evoke posterior root-muscle (PRM) reflexes.Approach.In 16 neurologically intact participants, tSCS was delivered using a 1 ms long monophasic pulse with and without a high-frequency carrier. Stimulation amplitude and pulse duration were varied and PRM reflexes were recorded from the soleus, gastrocnemius, and tibialis anterior muscles. Participants rated their discomfort during stimulation from 0 to 10 at PRM reflex threshold.Main Results.At PRM reflex threshold, the addition of a high-frequency carrier (0.87 ± 0.2) was equally comfortable as conventional stimulation (1.03 ± 0.18) but required approximately double the charge to evoke the PRM reflex (conventional: 32.4 ± 9.2µC; high-frequency carrier: 62.5 ± 11.1µC). Strength-duration curves for tSCS with a high-frequency carrier had a rheobase that was 4.8× greater and a chronaxie that was 5.7× narrower than the conventional monophasic pulse, indicating that the addition of a high-frequency carrier makes stimulation less efficient in recruiting neural activity in spinal roots.Significance.Using a high-frequency carrier for tSCS is equally as comfortable and less efficient as conventional stimulation at amplitudes required to stimulate spinal dorsal roots.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/fisiologia , Músculo Esquelético/fisiologia
14.
Science ; 382(6671): eabn4732, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943926

RESUMO

Miniature wireless bioelectronic implants that can operate for extended periods of time can transform how we treat disorders by acting rapidly on precise nerves and organs in a way that drugs cannot. To reach this goal, materials and methods are needed to wirelessly transfer energy through the body or harvest energy from the body itself. We review some of the capabilities of emerging energy transfer methods to identify the performance envelope for existing technology and discover where opportunities lie to improve how much-and how efficiently-we can deliver energy to the tiny bioelectronic implants that can support emerging medical technologies.


Assuntos
Transferência de Energia , Miniaturização , Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Corpo Humano
15.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790562

RESUMO

Objective: Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated platinum/iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, effectiveness of stimulation relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures. Approach: We employed a hybrid computational modeling approach to analyze the impact of the Injectrode system design parameters on charge delivery and the neural response to stimulation. We constructed multiple finite element method models of DRG stimulation and multi-compartment models of DRG neurons. We simulated the neural responses using parameters based on prior acute preclinical experiments. Additionally, we developed multiple human-scale computational models of DRG stimulation to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds. Main results: Our findings were in accordance with acute experimental measurements and indicated that the Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity. Significance: The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aß activation from the undesired Aδ-fiber activation.

16.
Nat Med ; 29(3): 689-699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807682

RESUMO

Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Acidente Vascular Cerebral , Humanos , Paresia/etiologia , Paresia/terapia , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Extremidade Superior , Feminino , Adulto , Pessoa de Meia-Idade
17.
medRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076797

RESUMO

Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.

18.
Nat Biomed Eng ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097809

RESUMO

Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.

19.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945597

RESUMO

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia Celular , Fenômenos Fisiológicos Respiratórios
20.
J Surg Res ; 176(2): 490-502, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22341350

RESUMO

BACKGROUND: Current treatment principles for muscle injuries with volumetric loss have been largely derived from empirical observations. Differences in severity or anatomic location have determinant effects on the tissue remodeling outcome. Biologic scaffolds composed of extracellular matrix (ECM) have been successfully used to restore vascularized, innervated, and contractile skeletal muscle in animal models but limited anatomic locations have been evaluated. The aim of this study was to determine the ability of a xenogeneic ECM scaffold to restore functional skeletal muscle in a canine model of a complex quadriceps injury involving bone, tendon, and muscle. MATERIALS AND METHODS: Sixteen dogs were subjected to unilateral resection of the distal third of the vastus lateralis and medial half of the distal third of the vastus medialis muscles including the proximal half of their associated quadriceps tendon. This defect was replaced with a biologic scaffold composed of small intestinal submucosa extracellular matrix (SIS-ECM) and the remodeling response was evaluated at 1, 2, 3, and 6 mo (N = 4 per group). RESULTS: The initial remodeling process followed a similar pattern to other studies of ECM-mediated muscle repair with rapid vascularization and migration of myoblasts into the defect site. However, over time the remodeling response resulted in the formation of dense collagenous tissue with islands of muscle in the segments of the scaffold not in contact with bone, and foci of bone and cartilage in the segments that were adjacent to the underlying bone. CONCLUSIONS: SIS-ECM was not successful at restoring functional muscle tissue in this model. However, the results also suggest that SIS-ECM may have potential to promote integration of soft and boney tissues when implanted in close apposition to bone.


Assuntos
Matriz Extracelular/transplante , Mucosa Intestinal/transplante , Doenças Musculoesqueléticas/cirurgia , Músculo Quadríceps/lesões , Traumatismos dos Tendões/cirurgia , Alicerces Teciduais , Potenciais de Ação/fisiologia , Animais , Cartilagem/fisiologia , Modelos Animais de Doenças , Cães , Eletromiografia , Matriz Extracelular/fisiologia , Feminino , Fêmur/fisiologia , Mucosa Intestinal/fisiologia , Contração Muscular/fisiologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/cirurgia , Regeneração/fisiologia , Suínos , Traumatismos dos Tendões/fisiopatologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA