Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Korean J Chem Eng ; 40(6): 1389-1400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325271

RESUMO

Performance of an anaerobic moving bed biofilm reactor (AnMBBR) was evaluated for pretreatment of real textile desizing wastewater at organic loading rate (OLR) of 1±0.05 to 6.3±0.37 kgCOD/m3/d. After OLR optimization, the performance of AnMBBR was evaluated for biodegradation of reactive dyes. AnMBBR was operated under a mesophilic temperature range of 30 to 36 °C, while the oxidation-reduction potential (ORP) and pH were in the range of 504 to 594 (-mV) and 6.98 to 7.28, respectively. By increasing the OLR from 1±0.05 to 6.3±0.37 kgCOD/m3/d, COD and BOD5 removal was decreased from 84 to 39% and 89 to 49%, respectively. While the production of biogas was increased from 0.12 to 0.83 L/L·d up to an optimum OLR of 4.9±0.43 kgCOD/m3/d. With increase in the dye concentration in the feed, COD, BOD5, color removal and biogas production reduced from 56, 63, 70% and 0.65 L/L·d to 34, 43, 41% and 0.08 L/L·d, respectively. Based on the data obtained, a cost-benefit analysis of AnMBBR was also investigated for the pretreatment of real textile desizing wastewater. Cost estimation of anaerobic pretreatment of textile desizing wastewater indicated a net profit of 21.09 million PKR/yr (114,000 €/yr) and a potential payback period of 2.54 years.

2.
Sci Total Environ ; 903: 166540, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634730

RESUMO

Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.

3.
Sci Total Environ ; 846: 157375, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850355

RESUMO

Wastewater-based epidemiology (WBE) has demonstrated its importance to support SARS-CoV-2 epidemiology complementing individual testing strategies. Due to their immune-evasive potential and the resulting significance for public health, close monitoring of SARS-CoV-2 variants of concern (VoC) is required to evaluate the regulation of early local countermeasures. In this study, we demonstrate a rapid workflow for wastewater-based early detection and monitoring of the newly emerging SARS-CoV-2 VoCs Omicron in the end of 2021 at the municipal wastewater treatment plant (WWTP) Emschermuendung (KLEM) in the Federal State of North-Rhine-Westphalia (NRW, Germany). Initially, available primers detecting Omicron-related mutations were rapidly validated in a central laboratory. Subsequently, RT-qPCR analysis of purified SARS-CoV-2 RNA was performed in a decentral PCR laboratory in close proximity to KLEM. This decentralized approach enabled the early detection of K417N present in Omicron in samples collected on 8th December 2021 and the detection of further mutations (N501Y, Δ69/70) in subsequent biweekly sampling campaigns. The presence of Omicron in wastewater was confirmed by next generation sequencing (NGS) in a central laboratory with samples obtained on 14th December 2021. Moreover, the relative increase of the mutant fraction of Omicron was quantitatively monitored over time by dPCR in a central PCR laboratory starting on 12th December 2021 confirming Omicron as the dominant variant by the end of 2021. In conclusions, WBE plays a crucial role in surveillance of SARS-CoV-2 variants and is suitable as an early warning system to identify variant emergence. In particular, the successive workflow using RT-qPCR, RT-dPCR and NGS demonstrates the strength of WBE as a versatile tool to monitor variant spreading.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sensibilidade e Especificidade , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146683

RESUMO

Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. The Omicron sub-variants BA.4/BA.5 have spread globally, displacing the preceding variants. Due to the severe transmissibility and immune escape potential of BA.4/BA.5, early monitoring was required to assess and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/BA.5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability for detecting BA.4/BA.5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022, and the presence of BA.4/BA.5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V and NGS sequencing. Finally, the mutant fractions were quantitatively monitored by digital PCR, confirming BA.4/BA.5 as the majority variant by 5 June 2022. In conclusion, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variants spreading independently of individual test capacities.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Águas Residuárias
5.
Sci Total Environ ; 751: 141750, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32861187

RESUMO

Wastewater-based monitoring of the spread of the new SARS-CoV-2 virus, also referred to as wastewater-based epidemiology (WBE), has been suggested as a tool to support epidemiology. An extensive sampling campaign, including nine municipal wastewater treatment plants, has been conducted in different cities of the Federal State of North Rhine-Westphalia (Germany) on the same day in April 2020, close to the first peak of the corona crisis. Samples were processed and analysed for a set of SARS-CoV-2-specific genes, as well as pan-genotypic gene sequences also covering other coronavirus types, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, a comprehensive set of chemical reference parameters and bioindicators was analysed to characterize the wastewater quality and composition. Results of the RT-qPCR based gene analysis indicate the presence of SARS-CoV-2 genetic traces in different raw wastewaters. Furthermore, selected samples have been sequenced using Sanger technology to confirm the specificity of the RT-qPCR and the origin of the coronavirus. A comparison of the particle-bound and the dissolved portion of SARS-CoV-2 virus genes shows that quantifications must not neglect the solid-phase reservoir. The infectivity of the raw wastewater has also been assessed by viral outgrowth assay with a potential SARS-CoV-2 host cell line in vitro, which were not infected when exposed to the samples. This first evidence suggests that wastewater might be no major route for transmission to humans. Our findings draw attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Águas Residuárias , Betacoronavirus , COVID-19 , Cidades , Alemanha/epidemiologia , Humanos , SARS-CoV-2
6.
J Contam Hydrol ; 92(1-2): 129-48, 2007 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-17291626

RESUMO

We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.


Assuntos
Modelos Biológicos , Bactérias Redutoras de Enxofre/metabolismo , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Etanol/metabolismo , Cinética , Nitratos/metabolismo , Oxirredução , Sulfatos/metabolismo , Urânio/química , Poluentes Radioativos da Água/química , Abastecimento de Água
7.
Environ Toxicol Chem ; 35(4): 823-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26666847

RESUMO

Pharmaceuticals are known to occur widely in the environment of industrialized countries. In developing countries, more monitoring results have recently become available, but a concise picture of measured environmental concentrations (MECs) is still elusive. Through a comprehensive literature review of 1016 original publications and 150 review articles, the authors collected MECs for human and veterinary pharmaceutical substances reported worldwide in surface water, groundwater, tap/drinking water, manure, soil, and other environmental matrices in a comprehensive database. Due to the heterogeneity of the data sources, a simplified data quality assessment was conducted. The database reveals that pharmaceuticals or their transformation products have been detected in the environment of 71 countries covering all continents. These countries were then grouped into the 5 regions recognized by the United Nations (UN). In total, 631 different pharmaceutical substances were found at MECs above the detection limit of the respective analytical methods employed, revealing distinct regional patterns. Sixteen substances were detected in each of the 5 UN regions. For example, the anti-inflammatory drug diclofenac has been detected in environmental matrices in 50 countries, and concentrations found in several locations exceeded predicted no-effect concentrations. Urban wastewater seems to be the dominant emission pathway for pharmaceuticals globally, although emissions from industrial production, hospitals, agriculture, and aquaculture are important locally. The authors conclude that pharmaceuticals are a global challenge calling for multistakeholder approaches to prevent, reduce, and manage their entry into and presence in the environment, such as those being discussed under the Strategic Approach to International Chemicals Management, a UN Environment Program.


Assuntos
Poluentes Ambientais/análise , Preparações Farmacêuticas/análise , Agricultura , Animais , Aquicultura , Monitoramento Ambiental , Hospitais , Humanos , Águas Residuárias/química , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 44(1): 116-22, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20039741

RESUMO

Arsenic (As) in soils and sediments is commonly mobilized when anoxic conditions promote microbial iron (Fe) and As reduction. Recent laboratory studies and field observations have suggested a decoupling between Fe and As reduction and release, but the links between these processes are still not well understood. In microcosm experiments, we monitored the formation of Fe(II) and As(III) in the porewater and in the soil solid-phase during flooding of a contaminated floodplain soil at temperatures of 23, 14, and 5 degrees C. At all temperatures, flooding induced the development of anoxic conditions and caused increasing concentrations of dissolved Fe(II) and As(III). Decreasing the temperature from 23 to 14 and 5 degrees C strongly slowed down soil reduction and Fe and As release. Speciation of As in the soil solid-phase by X-ray absorption spectroscopy (XAS) and extraction of the Fe(II) that has formed by reductive Fe(III) (hydr)oxide dissolution revealed that less than 3.9% of all As(III) and less than 3.2% of all Fe(II) formed during 52 days of flooding at 23 degrees C were released into the porewater, although 91% of the initially ascorbate-extractable Fe and 66% of the total As were reduced. The amount of total As(III) formed during soil reduction was linearly correlated to the amount of total Fe(II) formed, indicating that the rate of As(V) reduction was controlled by the rate of microbial Fe(III) (hydr)oxide reduction.


Assuntos
Arsênio/química , Inundações , Ferro/química , Poluentes do Solo/química , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA