Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(8): 4216-4245, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412633

RESUMO

RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.


Assuntos
Metiltransferases/antagonistas & inibidores , RNA , Desenvolvimento de Medicamentos , Humanos , S-Adenosilmetionina/análogos & derivados
2.
J Med Chem ; 65(14): 9750-9788, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35849534

RESUMO

Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.


Assuntos
Metiltransferases , Neoplasias , Proteínas Arqueais , Células CACO-2 , DNA , Humanos , Neoplasias/tratamento farmacológico , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia , S-Adenosilmetionina/metabolismo
3.
Adv Biol (Weinh) ; 5(10): e2100866, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34535986

RESUMO

Epitranscriptomics heavily rely on chemical reagents for the detection, quantification, and localization of modified nucleotides in transcriptomes. Recent years have seen a surge in mapping methods that use innovative and rediscovered organic chemistry in high throughput approaches. While this has brought about a leap of progress in this young field, it has also become clear that the different chemistries feature variegated specificity and selectivity. The associated error rates, e.g., in terms of false positives and false negatives, are in large part inherent to the chemistry employed. This means that even assuming technically perfect execution, the interpretation of mapping results issuing from the application of such chemistries are limited by intrinsic features of chemical reactivity. An important but often ignored fact is that the huge stochiometric excess of unmodified over-modified nucleotides is not inert to any of the reagents employed. Consequently, any reaction aimed at chemical discrimination of modified versus unmodified nucleotides has optimal conditions for selectivity that are ultimately anchored in relative reaction rates, whose ratio imposes intrinsic limits to selectivity. Here chemical reactivities of canonical and modified ribonucleosides are revisited as a basis for an understanding of the limits of selectivity achievable with chemical methods.


Assuntos
RNA , Ribonucleosídeos , Indicadores e Reagentes , Nucleotídeos , RNA/metabolismo , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA