Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(27): 13508-13516, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31196957

RESUMO

Injection of Interleukin-2 (IL-2) complexed with a particular anti-IL-2 monoclonal antibody (mab) JES6-1 has been shown to selectively expand CD4+Foxp3+ T regulatory T cells (Tregs) in vivo. Although the potency of this approach with regard to transplantation has already been proven in an islet transplantation model, skin graft survival could not be prolonged. Since the latter is relevant to human allograft survival, we sought to improve the efficiency of IL-2 complex (cplx) treatment for skin allograft survival in a stringent murine skin graft model. Here, we show that combining low doses of IL-2 cplxs with rapamycin and blockade of the inflammatory cytokine IL-6 leads to long-term (>75 d) survival of major histocompatibility complex-different skin allografts without the need for immunosuppression. Allograft survival was critically dependent on CD25+FoxP3+ Tregs and was not accompanied by impaired responsiveness toward donor alloantigens in vitro after IL-2 cplx treatment was stopped. Furthermore, second donor-type skin grafts were rejected and provoked rejection of the primary graft, suggesting that operational tolerance is not systemic but restricted to the graft. These findings plus the lack of donor-specific antibody formation imply that prolonged graft survival was largely a reflection of immunological ignorance. The results may represent a potentially clinically translatable strategy for the development of protocols for tolerance induction.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Transplante de Pele , Linfócitos T Reguladores/imunologia , Aloenxertos , Animais , Anticorpos Monoclonais/imunologia , Feminino , Citometria de Fluxo , Sobrevivência de Enxerto/imunologia , Imunossupressores/uso terapêutico , Interleucina-2/imunologia , Interleucina-6/antagonistas & inibidores , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Sirolimo/uso terapêutico
2.
J Immunol ; 199(7): 2366-2376, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835458

RESUMO

IL-17-producing γδ T (γδT-17) cells have proved to be an important early source of IL-17 in many inflammatory settings and are emerging as an important participant in protumor immune responses. Considering that their peripheral activation depends largely on innate signals rather than TCR ligation, it is important to understand what mechanisms exist to curb unwanted activation. Expression of the high-affinity IL-2R on γδT-17 cells prompted us to investigate a role for this cytokine. We found γδT-17 cells to be enriched, not depleted, in IL-2-deficient mice. The absence of IL-2 also resulted in higher IL-17 production and the emergence of IL-17+IFN-γ+ double producers. Furthermore, the addition of IL-2 to in vitro cultures of sorted γδT-17 cells was able to moderate IL-17 and affect differentiation into polyfunctional cytokine-producing cells. Interestingly, the Vγ6+ subset was more susceptible to the effects of IL-2 than Vγ4+ γδT-17 cells. We also found that unlike other γδ T cells, γδT-17 cells do not produce IL-2, but express Blimp-1, a known transcriptional repressor of IL-2. Although IL-2 was able to induce robust proliferation of γδT-17 cells, it did not sustain viability, negatively impacting their survival via downregulation of the IL-7R. Taken together, these data indicate that IL-2 can augment the γδT-17 response in favor of short-lived effectors with limited plasticity, particularly in the presence of IL-1ß and IL-23. In this way, IL-2 may act to curtail the innate-like response of γδT-17 cells upon arrival of IL-2-producing adaptive immune cells at the site of inflammation.


Assuntos
Interleucina-17/biossíntese , Interleucina-2/imunologia , Interleucina-2/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Citometria de Fluxo , Inflamação , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-2/deficiência , Interleucina-2/genética , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 1 de Ligação ao Domínio I Regulador Positivo , Receptores de Interleucina-7/genética , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Immunol ; 196(2): 645-54, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26673141

RESUMO

γδ T cells respond to molecules upregulated following infection or cellular stress using both TCR and non-TCR molecules. The importance of innate signals versus TCR ligation varies greatly. Both innate-like IL-17-producing γδ T (γδT-17) and IFN-γ-producing γδ T (γδT-IFNγ) subsets tune the sensitivity of their TCR following thymic development, allowing robust responses to inflammatory cytokines in the periphery. The remaining conventional γδ T cells retain high TCR responsiveness. We determined homeostatic mechanisms that govern these various subsets in the peripheral lymphoid tissues. We found that, although innate-like γδT-17 and γδT-IFNγ cells share elements of thymic development, they diverge when it comes to homeostasis. Both exhibit acute sensitivity to cytokines compared with conventional γδ T cells, but they do not monopolize the same cytokine. γδT-17 cells rely exclusively on IL-7 for turnover and survival, aligning them with NKT17 cells; IL-7 ligation triggers proliferation, as well as promotes survival, upregulating Bcl-2 and Bcl-xL. γδT-IFNγ cells instead depend heavily on IL-15. They display traits analogous to memory CD8(+) T cells and upregulate Bcl-xL and Mcl-1 upon cytokine stimulation. The conventional γδ T cells display low sensitivity to cytokine-alone stimulation and favor IL-7 for their turnover, characteristics reminiscent of naive αß T cells, suggesting that they may also require tonic TCR signaling for population maintenance. These survival constraints suggest that γδ T cell subsets do not directly compete with each other for cytokines, but instead fall into resource niches with other functionally similar lymphocytes.


Assuntos
Homeostase/imunologia , Imunidade Inata/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Citocinas/imunologia , Citometria de Fluxo , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta
4.
Immunol Cell Biol ; 94(7): 623-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27241697

RESUMO

Compared with lymphoid tissues, the immune cell compartment at mucosal sites is enriched with T cells bearing the γδ T-cell receptor (TCR). The female reproductive tract, along with the placenta and uterine decidua during pregnancy, are populated by γδ T cells predominantly expressing the invariant Vγ6(+)Vδ1(+) receptor. Surprisingly little is understood about the function of these cells. We found that the majority of γδ T cells in the non-pregnant uterus, pregnant uterus, decidua and placenta of mice express the transcription factor RORγt and produce interleukin-17 (IL-17). In contrast, IFNγ-producing γδ T cells were markedly reduced in gestational tissues compared with uterine-draining lymph nodes and spleen. Both uterine-resident invariant Vγ6(+) and Vγ4(+) γδ T cells which are more typically found in lymphoid tissues and circulating blood, were found to express IL-17. Vγ4(+) γδ T cells were particularly enriched in the placenta, suggesting a pregnancy-specific recruitment or expansion of these cells. A small increase in IL-17-producing γδ T cells was observed in allogeneic compared with syngeneic pregnancy, suggesting a contribution to regulating the maternal response to paternally-derived alloantigens. However, their high proportions also in non-pregnant uteri and gestational tissues of syngeneic pregnancy imply a role in the prevention of intrauterine infection or quality control of fetal development. These data suggest the need for a more rigorous evaluation of the role of IL-17 in sustaining normal pregnancy, particularly as emerging data points to a pathogenic role for IL-17 in pre-eclampsia, pre-term birth, miscarriage and maternal immune activation-induced behavioral abnormalities in offspring.


Assuntos
Interleucina-17/biossíntese , Troca Materno-Fetal/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo , Animais , Feminino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Placenta/metabolismo , Gravidez , Útero/metabolismo
5.
J Immunol ; 193(1): 170-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24872190

RESUMO

B cells inhabit the normal human thymus, suggesting a role in T cell selection. In this study, we report that B cells can modulate thymic production of CD4+ Foxp3+ T cells (regulatory T cells [Tregs]). Mice with transgenic expression of BAFF (BAFF-Tg) harbor increased numbers of Helios+ Foxp3+ thymic Tregs and, similar to some human autoimmune conditions, also exhibit increased numbers of B cells colonizing the thymus. Distinct intrathymic B cell subpopulations were identified, namely B220+, IgM+, CD23(hi), CD21(int) cells; B220+, IgM+, CD23(lo), CD21(lo) cells; and a population of B220+, IgM+, CD23(lo), CD21(hi) cells. Anatomically, CD19+ B cells accumulated in the thymic medulla region juxtaposed to Foxp3+ T cells. These intrathymic B cells engender Tregs. Indeed, thymic Treg development was diminished in both B cell-deficient BAFF-Tg chimeras, but also B cell-deficient wild-type chimeras. B cell Ag capture and presentation are critical in vivo events for Treg development. In the absence of B cell surface MHC class II expression, thymic expansion of BAFF-Tg Tregs was lost. Further to this, expansion of Tregs did not occur in BAFF-Tg/Ig hen egg lysozyme BCR chimeras, demonstrating a requirement for Ag specificity. Thus, we present a mechanism whereby intrathymic B cells, through the provision of cognate help, contribute to the shaping of the Treg repertoire.


Assuntos
Linfócitos B/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Antígenos/genética , Antígenos/imunologia , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Linfócitos B/citologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos T Reguladores/citologia , Timo/citologia
6.
J Am Soc Nephrol ; 23(8): 1303-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22677553

RESUMO

Regulatory T cells (Tregs) help protect against autoimmune renal injury. The use of agonist antibodies and antibody/cytokine combinations to expand Tregs in vivo may have therapeutic potential for renal disease. Here, we investigated the effects of administering IL-2/IL-2Ab complexes in mice with adriamycin nephropathy, a model of proteinuric kidney disease that resembles human focal segmental glomerulosclerosis. Injecting IL-2/IL-2Ab complexes before or, to a lesser extent, after induction of disease promoted expansion of Tregs. Furthermore, administration of this complex was renoprotective, evidenced by improved renal function, maintenance of body weight, less histologic injury, and reduced inflammation. IL-2/IL-2Ab reduced serum IL-6 and renal expression of IL-6 and IL-17 but enhanced expression of IL-10 and Foxp3 in the spleen. In vitro, the addition of IL-2/IL-2Ab complexes induced rapid STAT-5 phosphorylation in CD4 T cells. In summary, these data suggest that inducing the expansion of Tregs by administering IL-2/IL-2Ab complexes is a possible strategy to treat renal disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Glomerulosclerose Segmentar e Focal/prevenção & controle , Interleucina-2/uso terapêutico , Proteinúria/prevenção & controle , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos , Anticorpos Monoclonais/farmacologia , Doxorrubicina , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Interleucina-2/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteinúria/induzido quimicamente
7.
J Immunol ; 182(2): 793-801, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19124722

RESUMO

The cytokine B cell activation factor of the TNF family (BAFF) is considered to perform a proinflammatory function. This paradigm is particularly true for B cell-dependent immune responses; however the exact role for BAFF in regulating T cell immunity is ill-defined. To directly assess the effect of BAFF upon T cells, we analyzed T cell-dependent immune responses in BAFF-transgenic (Tg) mice. We found that T cell responses in BAFF-Tg mice are profoundly compromised, as indicated by their acceptance of islet allografts and delayed skin graft rejection. However, purified BAFF-Tg effector T cells could reject islet allografts with a normal kinetic, suggesting that the altered response did not relate to a defect in T cell function per se. Rather, we found that BAFF-Tg mice harbored an increased number of peripheral CD4+Foxp3+ T cells. A large proportion of the BAFF-expanded CD4+CD25+Foxp3+ regulatory T cells (Tregs) were CD62LlowCD103high and ICAM-1high, a phenotype consistent with an ability to home to inflammatory sites and prevent T cell effector responses. Indeed, depletion of the endogenous BAFF-Tg Tregs allowed allograft rejection to proceed, demonstrating that the increased Tregs were responsible for preventing alloimmunity. The ability of BAFF to promote Treg expansion was not T cell intrinsic, as Tregs did not express high levels of BAFF receptor 3, nor did excessive BAFF trigger NF-kappaB2 processing in Tregs. In contrast, we found that BAFF engendered Treg expansion through an indirect, B cell-dependent mechanism. Thus, under certain conditions, BAFF can play a surprising anti-inflammatory role in T cell biology by promoting the expansion of Treg cells.


Assuntos
Fator Ativador de Células B/genética , Proliferação de Células , Fatores de Transcrição Forkhead/biossíntese , Rejeição de Enxerto/prevenção & controle , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transplante de Pele/imunologia , Tolerância ao Transplante/genética
8.
J Immunol ; 182(6): 3902-18, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19265170

RESUMO

Autoimmune regulator (AIRE) is an important transcription regulator that mediates a role in central tolerance via promoting the "promiscuous" expression of tissue-specific Ags in the thymus. Although several mouse models of Aire deficiency have been described, none has analyzed the phenotype induced by a mutation that emulates the common 13-bp deletion in human APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) by disrupting the first plant homeodomain in exon 8. Aire-deficient mice with a corresponding mutation showed some disturbance of the medullary epithelial compartment, but at the phenotypic level their T cell compartment appeared relatively normal in the thymus and periphery. An increase in the number of activated T cells was evident, and autoantibodies against several organs were detected. At the histological level, lymphocytic infiltration of several organs indicated the development of autoimmunity, although symptoms were mild and the quality of life for Aire-deficient mice appeared equivalent to wild-type littermates, with the exception of male infertility. Vbeta and CDR3 length analysis suggested that each Aire-deficient mouse developed its own polyclonal autoimmune repertoire. Finally, given the prevalence of candidiasis in APECED patients, we examined the control of infection with Candida albicans in Aire-deficient mice. No increase in disease susceptibility was found for either oral or systemic infection. These observations support the view that additional genetic and/or environmental factors contribute substantially to the overt nature of autoimmunity associated with Aire mutations, even for mutations identical to those found in humans with APECED.


Assuntos
Mimetismo Molecular/genética , Mimetismo Molecular/imunologia , Mutagênese Sítio-Dirigida , Fenótipo , Poliendocrinopatias Autoimunes/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Pareamento de Bases/genética , Sequência de Bases , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Dados de Sequência Molecular , Poliendocrinopatias Autoimunes/imunologia , Poliendocrinopatias Autoimunes/metabolismo , Homologia de Sequência de Aminoácidos , Timo/imunologia , Timo/metabolismo , Timo/patologia , Fatores de Transcrição/biossíntese , Proteína AIRE
9.
J Exp Med ; 200(8): 1015-26, 2004 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-15492124

RESUMO

Inactivation of the autoimmune regulator (Aire) gene causes a rare recessive disorder, autoimmune polyendocrine syndrome 1 (APS1), but it is not known if Aire-dependent tolerance mechanisms are susceptible to the quantitative genetic changes thought to underlie more common autoimmune diseases. In mice with a targeted mutation, complete loss of Aire abolished expression of an insulin promoter transgene in thymic epithelium, but had no effect in pancreatic islets or the testes. Loss of one copy of Aire diminished thymic expression of the endogenous insulin gene and the transgene, resulting in a 300% increase in islet-reactive CD4 T cells escaping thymic deletion in T cell receptor transgenic mice, and dramatically increased progression to diabetes. Thymic deletion induced by antigen under control of the thyroglobulin promoter was abolished in Aire homozygotes and less efficient in heterozygotes, providing an explanation for thyroid autoimmunity in APS1. In contrast, Aire deficiency had no effect on thymic deletion to antigen controlled by a systemic H-2K promoter. The sensitivity of Aire-dependent thymic deletion to small reductions in function makes this pathway a prime candidate for more subtle autoimmune quantitative trait loci, and suggests that methods to increase Aire activity would be a potent strategy to lower the incidence of organ-specific autoimmunity.


Assuntos
Autoimunidade , Deleção Clonal , Dosagem de Genes , Poliendocrinopatias Autoimunes/genética , Timo/metabolismo , Fatores de Transcrição/genética , Animais , Expressão Gênica , Tolerância Imunológica , Insulina/genética , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/fisiologia , Glândula Tireoide/imunologia , Fatores de Transcrição/fisiologia , Proteína AIRE
10.
Nat Commun ; 8: 15373, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28497796

RESUMO

Interleukin-2 (IL-2) is an established therapeutic agent used for cancer immunotherapy. Since treatment efficacy is mediated by CD8+ and NK cell activity at the tumour site, considerable efforts have focused on generating variants that expand these subsets systemically, as exemplified by IL-2/antibody complexes and 'superkines'. Here we describe a novel determinant of antitumour activity using fusion proteins consisting of IL-2 and the antibody fragment crystallizable (Fc) region. Generation of long-lived IL-2-Fc variants in which CD25 binding is abolished through mutation effectively prevents unwanted activation of CD25+ regulatory T-cells (Tregs) and results in strong expansion of CD25- cytotoxic subsets. Surprisingly, however, such variants are less effective than wild-type IL-2-Fc in mediating tumour rejection. Instead, we report that efficacy is crucially dependent on depletion of Tregs through Fc-mediated immune effector functions. Our results underpin an unexpected mechanism of action and provide important guidance for the development of next generation IL-2 therapeutics.


Assuntos
Antineoplásicos/farmacologia , Fragmentos de Imunoglobulinas/imunologia , Imunoterapia , Ativação Linfocitária , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Imunoglobulina G/imunologia , Memória Imunológica , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/citologia , Subpopulações de Linfócitos/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutagênese , Neoplasias/terapia , Proteínas Recombinantes/metabolismo , Baço/citologia , Baço/metabolismo
11.
Diabetes ; 54(12): 3453-7, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306361

RESUMO

Congenic mouse strains provide a unique resource for genetic dissection and biological characterization of chromosomal regions associated with diabetes progression in the nonobese diabetic (NOD) mouse. Idd11, a mouse diabetes susceptibility locus, was previously localized to a region on chromosome 4. Comparison of a panel of subcongenic NOD mouse strains with different intervals derived from the nondiabetic C57BL/6 (B6) strain now maps Idd11 to an approximately 8-Mb interval. B6-derived intervals protected congenic NOD mice from diabetes onset, even though lymphocytic infiltration of pancreatic islets was similar to that found in NOD mice. In addition, neither thymic structural irregularities nor NKT cell deficiencies were ameliorated in diabetes-resistant congenic NOD mice, indicating that Idd11 does not contribute to these abnormalities, which do not need to be corrected to prevent disease.


Assuntos
Diabetes Mellitus Tipo 1/genética , Timo/patologia , Animais , Mapeamento Cromossômico , Predisposição Genética para Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
12.
Diabetes ; 60(3): 867-75, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21357471

RESUMO

OBJECTIVE: Type 1 diabetes is an incurable chronic autoimmune disease. Although transplantation of pancreatic islets may serve as a surrogate source of insulin, recipients are subjected to a life of immunosuppression. Interleukin (IL)-21 is necessary for type 1 diabetes in NOD mice. We examined the efficacy of an IL-21-targeted therapy on prevention of diabetes in NOD mice, in combination with syngeneic islet transplantation. In addition, we assessed the role of IL-21 responsiveness in islet allograft rejection in mouse animal models. RESEARCH DESIGN AND METHODS: NOD mice were treated with IL-21R/Fc, an IL-21-neutralizing chimeric protein. This procedure was combined with syngeneic islet transplantation to treat diabetic NOD mice. Survival of allogeneic islet grafts in IL-21R-deficient mice was also assessed. RESULTS: Evidence is provided that IL-21 is continually required by the autoimmune infiltrate, such that insulitis was reduced and reversed and diabetes inhibited by neutralization of IL-21 at a late preclinical stage. Recovery from autoimmune diabetes was achieved by combining neutralization of IL-21 with islet transplantation. Furthermore, IL-21-responsiveness by CD8+ T-cells was sufficient to mediate islet allograft rejection. CONCLUSIONS: Neutralization of IL-21 in NOD mice can inhibit diabetes, and when paired with islet transplantation, this therapeutic approach restored normoglycemia. The influence of IL-21 on a graft-mounted immune response was robust, since the absence of IL-21 signaling prevented islet allograft rejection. These findings suggest that therapeutic manipulation of IL-21 may serve as a suitable treatment for patients with type 1 diabetes.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Sobrevivência de Enxerto/imunologia , Interleucinas/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Animais , Anticorpos Neutralizantes , Citometria de Fluxo , Imuno-Histoquímica , Terapia de Imunossupressão , Inflamação/imunologia , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Mol Immunol ; 49(3): 518-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22036612

RESUMO

Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs.


Assuntos
Metilação de DNA , Células Epiteliais/metabolismo , Regiões Promotoras Genéticas , Timoma/metabolismo , Timo/metabolismo , Neoplasias do Timo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteína AIRE
14.
J Exp Med ; 206(4): 751-60, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19332874

RESUMO

Via a transcription factor, Foxp3, immunoregulatory CD4(+)CD25(+) T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2-IL-2 mAb complexes for a short period of 3 d induces a marked (>10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1-2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2-IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex-incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.


Assuntos
Anticorpos Monoclonais/farmacologia , Sobrevivência de Enxerto/imunologia , Interleucina-2/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo/imunologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Divisão Celular , Encefalomielite Autoimune Experimental/imunologia , Genes RAG-1 , Glicoproteínas/imunologia , Imunofenotipagem , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
15.
J Immunol ; 180(6): 3824-32, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18322189

RESUMO

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.


Assuntos
Anticorpos Monoclonais/análise , Especificidade de Anticorpos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Timo/citologia , Timo/imunologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Reações Antígeno-Anticorpo , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Pontos Quânticos , Ratos , Timo/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteína AIRE
16.
Proc Natl Acad Sci U S A ; 102(11): 4068-73, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15753313

RESUMO

The production of mature germ cells capable of generating totipotent zygotes is a highly specialized and sexually dimorphic process. The transition from diploid primordial germ cell to haploid spermatozoa requires genome-wide reprogramming of DNA methylation, stage- and testis-specific gene expression, mitotic and meiotic division, and the histone-protamine transition, all requiring unique epigenetic control. Dnmt3L, a DNA methyltransferase regulator, is expressed during gametogenesis, and its deletion results in sterility. We found that during spermatogenesis, Dnmt3L contributes to the acquisition of DNA methylation at paternally imprinted regions, unique nonpericentric heterochromatic sequences, and interspersed repeats, including autonomous transposable elements. We observed retrotransposition of an LTR-ERV1 element in the DNA from Dnmt3L-/- germ cells, presumably as a result of hypomethylation. Later in development, in Dnmt3L-/- meiotic spermatocytes, we detected abnormalities in the status of biochemical markers of heterochromatin, implying aberrant chromatin packaging. Coincidentally, homologous chromosomes fail to align and form synaptonemal complexes, spermatogenesis arrests, and spermatocytes are lost by apoptosis and sloughing. Because Dnmt3L expression is restricted to gonocytes, the presence of defects in later stages reveals a mechanism whereby early genome reprogramming is linked inextricably to changes in chromatin structure required for completion of spermatogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Meiose/genética , Espermatogênese/genética , Animais , Cromatina/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Epigênese Genética/fisiologia , Impressão Genômica , Histonas/metabolismo , Masculino , Meiose/fisiologia , Camundongos , Camundongos Knockout , Espermatogênese/fisiologia , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA