RESUMO
BACKGROUND: The aim of this study was to evaluate the diagnostic yield of routine exome sequencing (ES) in fetuses with ultrasound anomalies. METHODS: We performed a retrospective analysis of the ES results of 629 fetuses with isolated or multiple anomalies referred in 2019-2022. Variants in a gene panel consisting of approximately 3400 genes associated with multiple congenital anomalies and/or intellectual disability were analyzed. We used trio analysis and filtering for de novo variants, compound heterozygous variants, homozygous variants, X-linked variants, variants in imprinted genes, and known pathogenic variants. RESULTS: Pathogenic and likely pathogenic variants (class five and four, respectively) were identified in 14.0% (88/629, 95% CI 11.5%-16.9%) of cases. In the current cohort, the probability of detecting a monogenetic disorder was â¼1:7 (88/629, 95% CI 1:8.7-1:5.9), ranging from 1:9 (49/424) in cases with one major anomaly to 1:5 (32/147) in cases with multiple system anomalies. CONCLUSIONS: Our results indicate that a notable number of fetuses (1:7) with ultrasound anomalies and a normal chromosomal microarray have a (likely) pathogenic variant that can be detected through prenatal ES. These results warrant implementation of exome sequencing in selected cases, including those with an isolated anomaly on prenatal ultrasound.
RESUMO
The key features of patients with a microduplication 5q35.2q35.3 (including the NSD1 gene) are short stature, microcephaly, mild developmental delay, behavioral problems, digital anomalies and congenital anomalies of internal organs. This core phenotype can be viewed as the reversed phenotype of Sotos syndrome, which is caused by a microdeletion in the same chromosomal region or a pathogenic variant in the NSD1 gene, and includes tall stature and macrocephaly, developmental delay, and epilepsy. Here, we report on a patient and his mother, both with a 5q35.2q35.3 duplication, adding a fifth family to the recently published overview of 39 patients of Quintero-Rivera et al. Our patient had several congenital anomalies, intrauterine growth restriction with a persisting short stature, while his mother was only mildly affected with decreased growth parameters. In addition, he had hemophagogocytic lymphohistiocytosis (HLH) triggered by Haemophilus influenzae and was recently diagnosed with Ewing sarcoma. Our cases carry the smallest duplication published (ca 332 kb, arr[hg19] 5q35.2q35.3(176493106-176824785)x3) further narrowing the distal side of the critical region of the 5q35.2q35.3 duplication. Besides broadening the clinical phenotypic spectrum, our report indicates that the 5q35.2q35.3 microduplication also shows a large intra-familial variability and expression.
Assuntos
Anormalidades Múltiplas , Nanismo , Microcefalia , Síndrome de Sotos , Masculino , Feminino , Humanos , Síndrome de Sotos/genética , Anormalidades Múltiplas/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mães , FenótipoRESUMO
PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.
Assuntos
Epilepsia , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Epilepsia/diagnóstico , Epilepsia/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/diagnóstico , Convulsões/genéticaRESUMO
Craniosynostosis may present in isolation, 'non-syndromic', or with additional congenital anomalies/neurodevelopmental disorders, 'syndromic'. Clinical focus shifted from confirming classical syndromic cases to offering genetic testing to all craniosynostosis patients. This retrospective study assesses diagnostic yield of molecular testing by investigating prevalences of chromosomal and monogenic (likely) pathogenic variants in an 11-year cohort of 1020 craniosynostosis patients. 502 children underwent genetic testing. Pathogenic variants were identified in 174 patients (35%). Diagnostic yield was significantly higher in syndromic craniosynostosis (62%) than in non-syndromic craniosynostosis (6%). Before whole exome sequencing (WES) emerged, single-gene testing was performed using Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA). Diagnostic yield was 11% and was highest for EFNB1, FGFR2, FGFR3, and IL11RA. Diagnostic yield for copy number variant analysis using microarray was 8%. From 2015 onwards, the WES craniosynostosis panel was implemented, with a yield of 10%. In unsolved, mainly syndromic, cases suspected of a genetic cause, additional WES panels (multiple congenital anomalies (MCA)/intellectual disability (ID)) or open exome analysis were performed with an 18% diagnostic yield. To conclude, microarray and the WES craniosynostosis panel are key to identifying pathogenic variants. in craniosynostosis patients. Given the advances in genetic diagnostics, we should look beyond the scope of the WES craniosynostosis panel and consider extensive genetic diagnostics (e.g. open exome sequencing, whole genome sequencing, RNA sequencing and episignature analysis) if no diagnosis is obtained through microarray and/or WES craniosynostosis panel. If parents are uncomfortable with more extensive diagnostics, MCA or ID panels may be considered.
RESUMO
TUBB2B codes for one of the isotypes of ß-tubulin and dominant negative variants in this gene result in distinctive malformations of cortical development (MCD), including dysgyria, dysmorphic basal ganglia and cerebellar anomalies. We present a novel family with a heterozygous missense variant in TUBB2B and an unusually mild phenotype. First, at 21 37 weeks of gestation ultrasonography revealed a fetus with a relatively small head, enlarged lateral ventricles, borderline hypoplastic cerebellum and a thin corpus callosum. The couple opted for pregnancy termination. Exome sequencing on fetal material afterwards identified a heterozygous maternally inherited variant in TUBB2B (NM_178012.4 (TUBB2B):c.530A > T, p.(Asp177Val)), not present in GnomAD and predicted as damaging. The healthy mother had only a language delay in childhood. This inherited TUBB2B variant prompted re-evaluation of the older son of the couple, who presented with a mild delay in motor skills and speech. His MRI revealed mildly enlarged lateral ventricles, a thin corpus callosum, mild cortical dysgyria, and dysmorphic vermis and basal ganglia, a pattern typical of tubulinopathies. This son finally showed the same TUBB2B variant, supporting pathogenicity of the TUBB2B variant. These observations illustrate the wide phenotypic heterogeneity of tubulinopathies, including reduced penetrance and mild expressivity, that require careful evaluation in pre- and postnatal counseling.
Assuntos
Malformações do Desenvolvimento Cortical , Tubulina (Proteína) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/genética , Mutação , Fenótipo , Gravidez , Tubulina (Proteína)/genéticaRESUMO
Somatic variation in mitochondrial DNA (mtDNA) has been described in primary breast tumors, including single-nucleotide variants and variation in the number of mtDNA molecules per cell (mtDNA content). However, there is currently a gap in the knowledge on the link between mitochondrial variation in breast cancer cells and their phenotypic behavior (i.e., tumorigenesis) or outcome. This review focuses on recent findings on mtDNA content and mtDNA somatic mutations in breast cancer and the potential biological impact and clinical relevance.
Assuntos
Neoplasias da Mama/genética , DNA Mitocondrial , Animais , Feminino , Humanos , MutaçãoRESUMO
The human mitochondrial DNA (mtDNA) encodes 37 genes, including thirteen proteins essential for the respiratory chain, and RNAs functioning in the mitochondrial translation apparatus. The total number of mtDNA molecules per cell (mtDNA content) is variable between tissue types and also between tumors and their normal counterparts. For breast cancer, tumors tend to be depleted in their mtDNA content compared to adjacent normal mammary tissue. Various studies have shown that primary breast tumors harbor somatic mtDNA variants. A decrease in mtDNA content or the presence of somatic variants could indicate a reduced mitochondrial function within breast cancer. In this explorative study we aimed to further understand genomic changes and expression of the mitochondrial genome within breast cancer, by analyzing RNA sequencing data of primary breast tumor specimens of 344 cases. We demonstrate that somatic variants detected at the mtRNA level are representative for somatic variants in the mtDNA. Also, the number of somatic variants within the mitochondrial transcriptome is not associated with mutational processes impacting the nuclear genome, but is positively associated with age at diagnosis. Finally, we observe that mitochondrial expression is related to ER status. We conclude that there is a large heterogeneity in somatic mutations of the mitochondrial genome within primary breast tumors, and differences in mitochondrial expression among breast cancer subtypes. The exact impact on metabolic differences and clinical relevance deserves further study.
RESUMO
Purpose: In this study, we aimed to explore whether low levels of mitochondrial DNA (mtDNA) content in the primary tumor could predict better outcome for breast cancer patients receiving anthracycline-based therapies. We hypothesized that tumor cells with low mtDNA content are more susceptible to mitochondrial damage induced by anthracyclines, and thus are more susceptible to anthracycline treatment.Experimental Design: We measured mtDNA content by a qPCR approach in 295 primary breast tumor specimens originating from two well-defined cohorts: 174 lymph node-positive patients who received adjuvant chemotherapy and 121 patients with advanced disease who received chemotherapy as first-line palliative treatment. The chemotherapy regimens given were either anthracycline-based (FAC/FEC) or methotrexate-based (CMF).Results: In both the adjuvant and advanced settings, we observed increased benefit for patients with low mtDNA content in their primary tumor, but only when treated with FAC/FEC. In multivariable Cox regression analysis for respectively distant metastasis-free survival and progression-free survival, the HR for the FAC/FEC-treated mtDNA low group in the adjuvant setting was 0.46 [95% confidence interval (CI), 0.24-0.89; P = 0.020] and in the advanced setting 0.49 (95% CI, 0.27-0.90; P = 0.022) compared with the FAC/FEC-treated mtDNA high group. We did not observe these associations in the patients treated with CMF.Conclusions: In our two study cohorts, breast cancer patients with low mtDNA content in their primary tumor had better outcome from anthracycline-containing chemotherapy. The frequently observed decrease in mtDNA content in primary breast tumors may be exploited by guiding chemotherapeutic regimen decision making. Clin Cancer Res; 23(16); 4735-43. ©2017 AACR.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Adulto , Antraciclinas/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estudos de Coortes , DNA Mitocondrial/metabolismo , DNA de Neoplasias/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Metotrexato/administração & dosagem , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Modelos de Riscos ProporcionaisRESUMO
The use of blood-circulating cell-free DNA (cfDNA) as 'liquid-biopsy' is explored worldwide, with hopes for its potential in providing prognostic or predictive information in cancer treatment. In exploring cfDNA, valuable repositories are biobanks containing material collected over time, however these retrospective cohorts have restrictive resources. In this study, we aimed to detect tumor-specific mutations in only minute amounts of serum-derived cfDNA by using a targeted next generation sequencing (NGS) approach. In a retrospective cohort of ten metastatic breast cancer patients, we profiled DNA from primary tumor tissue (frozen), tumor-adjacent normal tissue (formalin-fixed paraffin embedded), and three consecutive serum samples (frozen). Our presented workflow includes comparisons with matched normal DNA or in silico reference DNA to discriminate germline from somatic variants, validation of variants through the detection in at least two DNA samples of an individual, and the use of public databases on variants. By our workflow, we were able to detect a total of four variants traceable as circulating tumor DNA (ctDNA) in the sera of three of the ten patients.
Assuntos
Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , DNA de Neoplasias/genética , Feminino , Humanos , Metástase Neoplásica , Análise de Sequência de DNA/métodosRESUMO
Reduced mitochondrial DNA (mtDNA) content in breast cancer cell lines has been associated with transition towards a mesenchymal phenotype, but its clinical consequences concerning breast cancer dissemination remain unidentified. Here, we aimed to clarify the link between mtDNA content and a mesenchymal phenotype and its relation to prognosis of breast cancer patients. We analyzed mtDNA content in 42 breast cancer cell lines and 207 primary breast tumor specimens using a combination of quantitative PCR and array-based copy number analysis. By associating mtDNA content with expression levels of genes involved in epithelial-to-mesenchymal transition (EMT) and with the intrinsic breast cancer subtypes, we could not identify a relation between low mtDNA content and mesenchymal properties in the breast cancer cell lines or in the primary breast tumors. In addition, we explored the relation between mtDNA content and prognosis in our cohort of primary breast tumor specimens that originated from patients with lymph node-negative disease who did not receive any (neo)adjuvant systemic therapy. When patients were divided based on the tumor quartile levels of mtDNA content, those in the lowest quarter (≤ 350 mtDNA molecules per cell) showed a poorer 10-year distant metastasis-free survival than patients with > 350 mtDNA molecules per cell (HR 0.50 [95% CI 0.29-0.87], P = 0.015). The poor prognosis was independent of established clinicopathological markers (HR 0.54 [95% CI 0.30-0.97], P = 0.038). We conclude that, despite a lack of evidence between mtDNA content and EMT, low mtDNA content might provide meaningful prognostic value for distant metastasis in breast cancer.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Mitocondrial/genética , Transição Epitelial-Mesenquimal/genética , Adulto , Idoso , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Fenótipo , PrognósticoRESUMO
Assessing circulating tumor DNA (ctDNA) is a promising method to evaluate somatic mutations from solid tumors in a minimally-invasive way. In a group of twelve metastatic colorectal cancer (mCRC) patients undergoing liver metastasectomy, from each patient DNA from cell-free DNA (cfDNA), the primary tumor, metastatic liver tissue, normal tumor-adjacent colon or liver tissue, and whole blood were obtained. Investigated was the feasibility of a targeted NGS approach to identify somatic mutations in ctDNA. This targeted NGS approach was also compared with NGS preceded by mutant allele enrichment using synchronous coefficient of drag alteration technology embodied in the OnTarget assay, and for selected mutations with digital PCR (dPCR). All tissue and cfDNA samples underwent IonPGM sequencing for a CRC-specific 21-gene panel, which was analyzed using a standard and a modified calling pipeline. In addition, cfDNA, whole blood and normal tissue DNA were analyzed with the OnTarget assay and with dPCR for specific mutations in cfDNA as detected in the corresponding primary and/or metastatic tumor tissue. NGS with modified calling was superior to standard calling and detected ctDNA in the cfDNA of 10 patients harboring mutations in APC, ATM, CREBBP, FBXW7, KRAS, KMT2D, PIK3CA and TP53. Using this approach, variant allele frequencies in plasma ranged predominantly from 1 to 10%, resulting in limited concordance between ctDNA and the primary tumor (39%) and the metastases (55%). Concordance between ctDNA and tissue markedly improved when ctDNA was evaluated for KRAS, PIK3CA and TP53 mutations by the OnTarget assay (80%) and digital PCR (93%). Additionally, using these techniques mutations were observed in tumor-adjacent tissue with normal morphology in the majority of patients, which were not observed in whole blood. In conclusion, in these mCRC patients with oligometastatic disease NGS on cfDNA was feasible, but had limited sensitivity to detect all somatic mutations present in tissue. Digital PCR and mutant allele enrichment before NGS appeared to be more sensitive to detect somatic mutations.
Assuntos
DNA Tumoral Circulante/sangue , Neoplasias do Colo/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Mutação/genética , Sistema Livre de Células , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da PolimeraseRESUMO
Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. A better understanding of neuroblastoma differentiation is essential for developing new therapeutic approaches. GDE2 (encoded by GDPD5) is a six-transmembrane-domain glycerophosphodiesterase that promotes embryonic neurogenesis. We find that high GDPD5 expression is strongly associated with favorable outcome in neuroblastoma. GDE2 induces differentiation of neuroblastoma cells, suppresses cell motility, and opposes RhoA-driven neurite retraction. GDE2 alters the Rac-RhoA activity balance and the expression of multiple differentiation-associated genes. Mechanistically, GDE2 acts by cleaving (in cis) and releasing glycosylphosphatidylinositol-anchored glypican-6, a putative co-receptor. A single point mutation in the ectodomain abolishes GDE2 function. Our results reveal GDE2 as a cell-autonomous inducer of neuroblastoma differentiation with prognostic significance and potential therapeutic value.