Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612058

RESUMO

Seismic anti-seismic rebar, as materials for supporting structures in large buildings, need to have excellent mechanical properties. By increasing the Nb content and controlling the cooling rate, the microstructure and precipitation behavior of the steel are adjusted to develop seismic anti-seismic rebar with excellent mechanical properties. Scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and a universal tensile testing machine were used to characterize the microstructure, precipitation phases, and mechanical properties of the experimental steels. The results show that the ferrite grain size, pearlite lamellae layer (ILS), and small-angle grain boundaries (LAGB) content of the high-Nb steels decreased to 6.39 µm, 0.12 µm, and 48.7%, respectively, as the Nb content was increased from 0.017 to 0.023 wt.% and the cooling rate was increased from 1 to 3 °C·s-1. The strength of the {332}<113>α texture is the highest in the high-Nb steels. The precipitated phase is (Nb, Ti, V)C with a diameter of ~50 nm, distributed on ferrite, and the matrix/precipitated phase mismatch is 8.16%, forming a semicommon-lattice interface between the two. The carbon diffusion coefficient model shows that increasing the Nb content can inhibit the diffusion of carbon atoms and reduce the ILS. The yield strength of the high-Nb steel is 556 MPa, and the tensile strength is 764 MPa.

2.
Materials (Basel) ; 17(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541546

RESUMO

High-carbon hardline steels are primarily used for the manufacture of tire beads for both automobiles and aircraft, and vanadium (V) microalloying is an important means of adjusting the microstructure of high-carbon hardline steels. Using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM), the microstructure and precipitation phases of continuous cooled high-carbon steels were characterized, and the vanadium content, carbon diffusion coefficient, and critical precipitation temperature were calculated. The results showed that as the V content increased to 0.06 wt.%, the interlamellar spacing (ILS) of the pearlite in the experimental steel decreased to 0.110 µm, and the carbon diffusion coefficient in the experimental steel decreased to 0.98 × 10-3 cm2·s-1. The pearlite content in the experimental steel with 0.02 wt.% V reached its maximum at a cooling rate of 5 °C·s-1, and a small amount of bainite was observed in the experimental steel at a cooling rate of 10 °C·s-1. The precipitated phase was VC with a diameter of ~24.73 nm, and the misfit between ferrite and VC was 5.02%, forming a semi-coherent interface between the two. Atoms gradually adjust their positions to allow the growth of VC along the ferrite direction. As the V content increased to 0.06 wt.%, the precipitation-temperature-time curve (PTT) shifted to the left, and the critical nucleation temperature for homogeneous nucleation, grain boundary nucleation, and dislocation line nucleation increased from 570.6, 676.9, and 692.4 °C to 634.6, 748.5, and 755.5 °C, respectively.

3.
Sci Rep ; 14(1): 16860, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043754

RESUMO

HRB500E rebar is a low-alloy high-strength steel with excellent mechanical properties and good plasticity but suffers from deficient corrosion resistance. This can be solved by adding trace elements, including rare earth elements. Herein, the corrosion-resistant behavior of rebar was evaluated by weightlessness testing and electrochemical measurements, and the effects of Ce on the structural evolution of the corrosion product layer were investigated by scanning electron microscopy (SEM), Electron Probe X-ray Micro-Analyzer (EPMA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that adding Ce to the rebar improved the densification of the reinforcing surface corrosion products, as well as reduced the corrosion rate of the experimental rebar. Compared to C0 sample without Ce, the rebar sample containing 0.044 wt.% Ce displayed increased Ecorr by 0.051 V, decreased Icorr by 15.573 mA cm-2, enhanced Rc of the corrosion product layer by 112.71 Ω cm2, incremented α-FeOOH content in the corrosion product layer, and boosted ratio of α/γ* in the corrosion product layer by 10.11%. Furthermore, the oxide (CeO2) formed by Ce in the corrosion layer of the rebar bar surface existed in the rust layer, resulting in a stable corrosion product layer with improved blocking ability of the corrosive medium. Overall, the addition of Ce at certain ratios looks promising to produce HRB500E rebar with excellent corrosion resistance and extended service life under harsh conditions.

4.
Adv Sci (Weinh) ; 9(25): e2202591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839467

RESUMO

Photodynamic therapy (PDT) is an emerging technique for treating tumors. Especially, topical administration of photosensitizers (PSs) is more favorable for superficial tumor treatments with low systematic phototoxicity. Yet, ineffective migration of PSs to targeted tumor tissues and rapid consumption of O2 during PDT greatly limit their effects. Herein, PS-loaded microneedle (MN) patches with O2 propellant for a deeper and faster transdermal delivery of PS and improved PDT by embedding sodium percarbonate (SPC) into dissolving poly(vinyl pyrrolidone) MNs are presented. It is shown that SPC in the MNs can react with surrounding fluid to generate gaseous oxygen bubbles, forming vigorous fluid flows and thus greatly enhancing PS of chlorin e6 (Ce6) penetration in both hydrogel models and skin tissues. Reactive oxygen species (ROS) in hypoxic breast cancer cells (4T1 cells) are greatly increased by rapid penetration of PS and relief of hypoxia in vitro, and Ce6-loaded SPC MNs show an excellent cell-killing effect. Moreover, lower tumor growth rate and tumor mass after a 20-d treatment in tumor-bearing mice model verify the improved PDT in gaseous oxygen-droved delivery of PS. This study demonstrates a facile yet effective route of MN delivery of PSs for improved PDT in hypoxic tumor treatment.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Camundongos , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA