Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033361

RESUMO

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Adulto , Alelos , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prognóstico
2.
Cell ; 152(1-2): 327-39, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332764

RESUMO

Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.


Assuntos
Imunoprecipitação da Cromatina , Modelos Biológicos , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/metabolismo , Animais , DNA/química , Humanos , Cadeias de Markov , Camundongos , Filogenia , Fatores de Transcrição/genética
3.
Am J Hum Genet ; 110(8): 1289-1303, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541187

RESUMO

Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in screening (FDR < 0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value = 1.2 × 10-16 and 3.2 × 10-7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Alelos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/genética , DNA Helicases/genética , Detecção Precoce de Câncer , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica , Coesinas
4.
EMBO Rep ; 25(3): 1589-1622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297188

RESUMO

Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Genes Homeobox , Genoma
5.
Cancer Sci ; 115(7): 2269-2285, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38720175

RESUMO

Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Progressão da Doença , Ferroptose , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Animais , Linhagem Celular Tumoral , Camundongos , Ferroptose/genética , Masculino , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Feminino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Pessoa de Meia-Idade , Prognóstico , Camundongos Nus , Transdução de Sinais/genética , Retroalimentação Fisiológica
6.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419596

RESUMO

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.


Assuntos
Neoplasias da Próstata , Microambiente Tumoral , Senescência Celular/genética , Genômica , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/genética , Microambiente Tumoral/genética
7.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890593

RESUMO

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Assuntos
Metilação de DNA , Epigênese Genética , Nitroimidazóis , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Idoso , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Administração Oral
8.
Cell Mol Life Sci ; 77(18): 3627-3642, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768607

RESUMO

Hypoxia-inducible factor (HIF), an αß dimer, is the master regulator of oxygen homeostasis with hundreds of hypoxia-inducible target genes. Three HIF isoforms differing in the oxygen-sensitive α subunit exist in vertebrates. While HIF-1 and HIF-2 are known transcription activators, HIF-3 has been considered a negative regulator of the hypoxia response pathway. However, the human HIF3A mRNA is subject to complex alternative splicing. It was recently shown that the long HIF-3α variants can form αß dimers that possess transactivation capacity. Here, we show that overexpression of the long HIF-3α2 variant induces the expression of a subset of genes, including the erythropoietin (EPO) gene, while simultaneous downregulation of all HIF-3α variants by siRNA targeting a shared HIF3A region leads to downregulation of EPO and additional genes. EPO mRNA and protein levels correlated with HIF3A silencing and HIF-3α2 overexpression. Chromatin immunoprecipitation analyses showed that HIF-3α2 binding associated with canonical hypoxia response elements in the promoter regions of EPO. Luciferase reporter assays showed that the identified HIF-3α2 chromatin-binding regions were sufficient to promote transcription by all three HIF-α isoforms. Based on these data, HIF-3α2 is a transcription activator that directly regulates EPO expression.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Eritropoetina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Dimerização , Eritropoetina/análise , Eritropoetina/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Splicing de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Ativação Transcricional
9.
Proc Natl Acad Sci U S A ; 113(46): 13015-13020, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27803324

RESUMO

STAT6 participates in classical IL-4/IL-13 signaling and stimulator of interferon genes-mediated antiviral innate immune responses. Aberrations in STAT6-mediated signaling are linked to development of asthma and diseases of the immune system. In addition, STAT6 remains constitutively active in multiple types of cancer. Therefore, targeting STAT6 is an attractive proposition for treating related diseases. Although a lot is known about the role of STAT6 in transcriptional regulation, molecular details on how STAT6 recognizes and binds specific segments of DNA to exert its function are not clearly understood. Here, we report the crystal structures of a homodimer of phosphorylated STAT6 core fragment (STAT6CF) alone and bound with the N3 and N4 DNA binding site. Analysis of the structures reveals that STAT6 undergoes a dramatic conformational change on DNA binding, which was further validated by performing molecular dynamics simulation studies and small angle X-ray scattering analysis. Our data show that a larger angle at the intersection where the two protomers of STAT meet and the presence of a unique residue, H415, in the DNA-binding domain play important roles in discrimination of the N4 site DNA from the N3 site by STAT6. H415N mutation of STAT6CF decreased affinity of the protein for the N4 site DNA, but increased its affinity for N3 site DNA, both in vitro and in vivo. Results of our structure-function studies on STAT6 shed light on mechanism of DNA recognition by STATs in general and explain the reasons underlying STAT6's preference for N4 site DNA over N3.


Assuntos
DNA/metabolismo , Fator de Transcrição STAT6/química , Fator de Transcrição STAT6/metabolismo , Sítios de Ligação , Cristalização , DNA/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Fator de Transcrição STAT6/genética
10.
Int J Cancer ; 143(10): 2479-2487, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30157291

RESUMO

Prostate cancer is one of the most common and heritable human cancers. Our aim was to find germline biomarkers that can predict disease outcome. We previously detected predisposing signals at 2q37, the location of the prostate specific ANO7 gene. To investigate, in detail, the associations between the ANO7 gene and PrCa risk and disease aggressiveness, ANO7 was sequenced in castration resistant tumors together with samples from unselected PrCa patients and unaffected males. Two pathogenic variants were discovered and genotyped in 1769 patients and 1711 unaffected males. Expression of ANO7 vs. PrCa aggressiveness was investigated. Different databases along with Swedish and Norwegian cohorts were used for validation. Case-control and aggressive vs. nonaggressive association analyses were performed against risk and/or cancer aggressiveness. The ANO7 mRNA level and patient survival were analyzed using expression data from databases. Variant rs77559646 showed both risk (OR 1.40; p = 0.009, 95% CI 1.09-1.78) and association with aggressive PrCa (Genotype test p = 0.04). It was found to be an eQTL for ANO7 (Linear model p-values for Finnish patients p = 0.009; Camcap prostate tumor p = 2.53E-06; Stockholm prostate tumor cohort p = 1.53E-13). rs148609049 was not associated with risk, but was related to shorter survival (HR 1.56; 95% CI 1.03-2.36). High ANO7 expression was independently linked to poor survival (HR 18.4; 95% CI 1.43-237). ANO7 genotypes correlate with expression and biochemical relapse, suggesting that ANO7 is a potential PrCa susceptibility gene and that its elevated expression correlates with disease severity and outcome.


Assuntos
Anoctaminas/genética , Neoplasias de Próstata Resistentes à Castração/genética , Anoctaminas/biossíntese , Estudos de Coortes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Locos de Características Quantitativas
11.
Int J Mol Sci ; 18(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598379

RESUMO

With the development of advanced genomic methods, a large amount of long non-coding RNAs (lncRNAs) has been found to be important for cancer initiation and progression. Given that most of the genome-wide association study (GWAS)-identified cancer risk SNPs are located in the noncoding region, the expression and function of lncRNAs are more likely to be affected by the SNPs. The SNPs may affect the expression of lncRNAs directly through disrupting the binding of transcription factors or indirectly by affecting the expression of regulatory factors. Moreover, SNPs may disrupt the interaction between lncRNAs and other RNAs or proteins. Unveiling the relationship of lncRNA, protein-coding genes, transcription factors and miRNAs from the angle of genomics will improve the accuracy of disease prediction and help find new therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Prognóstico , Fatores de Transcrição/metabolismo
12.
Int J Cancer ; 137(10): 2374-83, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26014856

RESUMO

HOXB7 encodes a transcription factor that is overexpressed in a number of cancers and encompasses many oncogenic functions. Previous results have shown it to promote cell proliferation, angiogenesis, epithelial-mesenchymal transition, DNA repair and cell survival. Because of its role in many cancers and tumorigenic processes, HOXB7 has been suggested to be a potential drug target. However, HOXB7 binding sites on chromatin and its targets are poorly known. The aim of our study was to identify HOXB7 binding sites on breast cancer cell chromatin and to delineate direct target genes located nearby these binding sites. We found 1,504 HOXB7 chromatin binding sites in BT-474 breast cancer cell line that overexpresses HOXB7. Seventeen selected binding sites were validated by ChIP-qPCR in several breast cancer cell lines. Furthermore, we analyzed expression of a large number of genes located nearby HOXB7 binding sites and found several new direct targets, such as CTNND2 and SCGB1D2. Identification of HOXB7 chromatin binding sites and target genes is essential to understand better the role of HOXB7 in breast cancer and mechanisms by which it regulates tumorigenic processes.


Assuntos
Neoplasias da Mama/metabolismo , Cromatina/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Sítios de Ligação , Cateninas/metabolismo , Linhagem Celular Tumoral , Cromatina/patologia , Imunoprecipitação da Cromatina/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Secretoglobinas/metabolismo , delta Catenina
13.
Prostate ; 75(12): 1264-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26015065

RESUMO

BACKGROUND: More than 100 prostate cancer (PCa) risk-associated single nucleotide polymorphisms (SNPs) have been identified by genome wide association studies (GWAS). However, the molecular mechanisms are unclear for most of these SNPs. METHODS: All reported PCa risk-associated SNPs reaching the genome-wide significance level of P < 1 × 10(-7) (index SNPs), as well as SNPs in linkage disequilibrium (LD, r(2) ≥ 0.5) with them were cataloged. Genomic regions with potentially functional impact were also identified, including UCSC annotated coding regions (exon and snoRNA/miRNA) and regulatory regions, as well as binding regions for transcription factors (TFs), histone modifications (HMs), DNase I hypersensitivity (DHSs), and RNA Polymerase IIA (POLR2A) defined by ChIP-Seq in prostate cell lines and tissues. Enrichment analysis was performed to test whether PCa risk-associated SNPs are located in these functional regions more than expected. RESULTS: A total of 103 PCa risk-associated index SNPs and 7,244 SNPs in LD with these index SNPs were cataloged. Genomic regions with potentially functional impact, grouped in 30 different categories of functionalities, were identified. Enrichment analysis indicated that genomic regions in the following 15 categories were enriched for the PCa risk-associated SNPs: exons, CpG regions, 6 TFs (AR, ERG, FOXA1, HOXB13, CTCF, and NR3C1), 5 HMs (H3K4me1, H3K4me2, H3K4me3, H3K27AC, and H3T11P), DHSs and POLR2A. In contrast, significantly fewer PCa risk SNPs were mapped to binding regions for H3K27me3, a repressive chromatin marker. CONCLUSIONS: The PCa risk-associated SNPs discovered to date may affect PCa risk through multiple different mechanisms, especially by affecting binding regions of TFs/HMs.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fatores de Risco
14.
EMBO J ; 29(13): 2147-60, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20517297

RESUMO

Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)-yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA-binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high-throughput microwell-based TF DNA-binding specificity assay, and protein-binding microarrays (PBMs). Both approaches reveal that the ETS-binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino-acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP-seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo.


Assuntos
DNA/metabolismo , Estudo de Associação Genômica Ampla , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/química , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/química , Análise de Sequência de DNA
15.
Artigo em Inglês | MEDLINE | ID: mdl-38565910

RESUMO

BACKGROUND: A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE: In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS: We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS: TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION: New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.

16.
Adv Sci (Weinh) ; 11(32): e2401492, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38932472

RESUMO

Genetic and epigenetic alterations are cancer hallmark characteristics. However, the role of inherited cancer predisposition alleles in co-opting lineage factor epigenetic reprogramming and tumor progression remains elusive. Here the FinnGen cohort phenome-wide analysis, along with multiple genome-wide association studies, has consistently identified the rs339331-RFX6/6q22 locus associated with prostate cancer (PCa) risk across diverse populations. It is uncovered that rs339331 resides in a reprogrammed androgen receptor (AR) binding site in PCa tumors, with the T risk allele enhancing AR chromatin occupancy. RFX6, an AR-regulated gene linked to rs339331, exhibits synergistic prognostic value for PCa recurrence and metastasis. This comprehensive in vitro and in vivo studies demonstrate the oncogenic functions of RFX6 in promoting PCa cell proliferation and metastasis. Mechanistically, RFX6 upregulates HOXA10 that profoundly correlates with adverse PCa outcomes and is pivotal in RFX6-mediated PCa progression, facilitating the epithelial-mesenchymal transition (EMT) and modulating the TGFß/SMAD signaling axis. Clinically, HOXA10 elevation is associated with increased EMT scores, tumor advancement and PCa recurrence. Remarkably, reducing RFX6 expression restores enzalutamide sensitivity in resistant PCa cells and tumors. This findings reveal a complex interplay of genetic and epigenetic mechanisms in PCa pathogenesis and drug resistance, centered around disrupted prostate lineage AR signaling and abnormal RFX6 expression.


Assuntos
Alelos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio , Neoplasias da Próstata , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética
17.
Signal Transduct Target Ther ; 9(1): 258, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341825

RESUMO

Epigenetic readers frequently affect gene regulation, correlate with disease prognosis, and hold significant potential as therapeutic targets for cancer. Zinc finger MYND-type containing 11 (ZMYND11) is notably recognized for reading the epigenetic marker H3.3K36me3; however, its broader functions and mechanisms of action in cancer remain underexplored. Here, we report that ZMYND11 downregulation is prevalent across various cancers and profoundly correlates with poorer outcomes in prostate cancer patients. Depletion of ZMYND11 promotes tumor cell growth, migration, and invasion in vitro, as well as tumor formation and metastasis in vivo. Mechanistically, we discover that ZMYND11 exhibits tumor suppressive roles by recognizing arginine-194-methylated HNRNPA1 dependent on its MYND domain, thereby retaining HNRNPA1 in the nucleus and preventing the formation of stress granules in the cytoplasm. Furthermore, ZMYND11 counteracts the HNRNPA1-driven increase in the PKM2/PKM1 ratio, thus mitigating the aggressive tumor phenotype promoted by PKM2. Remarkably, ZMYND11 recognition of HNRNPA1 can be disrupted by pharmaceutical inhibition of the arginine methyltransferase PRMT5. Tumors with low ZMYND11 expression show sensitivity to PRMT5 inhibitors. Taken together, our findings uncover a previously unexplored noncanonical role of ZMYND11 as a nonhistone methylation reader and underscore the critical importance of arginine methylation in the ZMYND11-HNRNPA1 interaction for restraining tumor progression, thereby proposing novel therapeutic targets and potential biomarkers for cancer treatment.


Assuntos
Epigênese Genética , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Epigênese Genética/genética , Masculino , Grânulos de Estresse/genética , Grânulos de Estresse/metabolismo , Linhagem Celular Tumoral , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Carcinogênese/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA , Proteínas de Ciclo Celular , Proteínas Correpressoras
18.
Adv Sci (Weinh) ; 11(33): e2402954, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962952

RESUMO

Genetic and epigenetic alterations occur in many physiological and pathological processes. The existing knowledge regarding the association of PIWI-interacting RNAs (piRNAs) and their genetic variants on risk and progression of prostate cancer (PCa) is limited. In this study, three genome-wide association study datasets are combined, including 85,707 PCa cases and 166,247 controls, to uncover genetic variants in piRNAs. Functional investigations involved manipulating piRNA expression in cellular and mouse models to study its oncogenetic role in PCa. A specific genetic variant, rs17201241 is identified, associated with increased expression of PROPER (piRNA overexpressed in prostate cancer) in tumors and are located within the gene, conferring an increased risk and malignant progression of PCa. Mechanistically, PROPER coupled with YTHDF2 to recognize N6-methyladenosine (m6A) and facilitated RNA-binding protein interactions between EIF2S3 at 5'-untranslated region (UTR) and YTHDF2/YBX3 at 3'-UTR to promote DUSP1 circularization. This m6A-dependent mRNA-looping pattern enhanced DUSP1 degradation and inhibited DUSP1 translation, ultimately reducing DUSP1 expression and promoting PCa metastasis via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Inhibition of PROPER expression using antagoPROPER effectively suppressed xenograft growth, suggesting its potential as a therapeutic target. Thus, targeting piRNA PROPER-mediated genetic and epigenetic fine control is a promising strategy for the concurrent prevention and treatment of PCa.


Assuntos
Adenosina , Carcinogênese , Fosfatase 1 de Especificidade Dupla , Neoplasias da Próstata , RNA Interferente Pequeno , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Camundongos , Animais , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Estudo de Associação Genômica Ampla/métodos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , RNA de Interação com Piwi
19.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645058

RESUMO

Genome wide association studies (GWASs) have identified numerous risk loci associated with prostate cancer, yet unraveling their functional significance remains elusive. Leveraging our high-throughput SNPs-seq method, we pinpointed rs4519489 within the multi-ancestry GWAS-discovered 2p25 locus as a potential functional SNP due to its significant allelic differences in protein binding. Here, we conduct a comprehensive analysis of rs4519489 and its associated gene, NOL10, employing diverse cohort data and experimental models. Clinical findings reveal a synergistic effect between rs4519489 genotype and NOL10 expression on prostate cancer prognosis and severity. Through unbiased proteomics screening, we reveal that the risk allele A of rs4519489 exhibits enhanced binding to USF1, a novel oncogenic transcription factor (TF) implicated in prostate cancer progression and prognosis, resulting in elevated NOL10 expression. Furthermore, we elucidate that NOL10 regulates cell cycle pathways, fostering prostate cancer progression. The concurrent expression of NOL10 and USF1 correlates with aggressive prostate cancer characteristics and poorer prognosis. Collectively, our study offers a robust strategy for functional SNP screening and TF identification through high-throughput SNPs-seq and unbiased proteomics, highlighting the rs4519489-USF1-NOL10 regulatory axis as a promising biomarker or therapeutic target for clinical diagnosis and treatment of prostate cancer.

20.
Nat Commun ; 15(1): 1729, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409266

RESUMO

Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.


Assuntos
Neoplasias , Transcriptoma , Humanos , Poliadenilação/genética , Estudo de Associação Genômica Ampla , Regiões 3' não Traduzidas/genética , Perfilação da Expressão Gênica , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA