Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nano Lett ; 24(14): 4124-4131, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38483552

RESUMO

Dynamic reversible noncovalent interactions make supramolecular framework (SF) structures flexible and designable. A three-dimensional (3D) growth of such frameworks is beneficial to improve the structure stability while maintaining unique properties. Here, through the ionic interaction of the polyoxometalate cluster, coordination of zinc ions with cationic terpyridine, and hydrogen bonding of grafted carboxyl groups, the construction of a 3D SF at a well-crystallized state is realized. The framework can grow in situ on the Zn surface, further extending laterally into a full covering without defects. Relying on the dissolution and the postcoordination effects, the 3D SF layer is used as an artificial solid electrolyte interphase to improve the Zn-anode performance. The uniformly distributed clusters within nanosized pores create a negatively charged nanochannel, accelerating zinc ion transfer and homogenizing zinc deposition. The 3D SF/Zn symmetric cells demonstrate high stability for over 3000 h at a current density of 5 mA cm-2.

2.
Nano Lett ; 23(1): 42-50, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562792

RESUMO

Dendrite growth and side reactions of Zn metal anodes remain unresolved obstacles for practical application of aqueous Zn ion batteries. Herein, a two-dimensional (2D) organic-inorganic heterostructure with controlled thickness was constructed as a protective layer for a Zn metal anode. The reduction of uniformly distributed polyoxometalate in the layer causes a negative charge density gradient, which can accelerate zinc ion transfer, homogenize zinc deposition, and shield sulfates at the electrode interface, while the exposed hydrophobic alkyl chain of the layer can isolate the direct contact of water with the Zn anode. As a result of the synergetic effect, this 2D organic-inorganic heterostructure enables high Zn plating/stripping reversibility, with high average Coulombic efficiencies of 99.97% for 3700 cycles at 2 mA cm-2. Under high Zn utilization conditions, a high areal-capacity full cell with hundreds of cycles was demonstrated.


Assuntos
Metais , Zinco , Fontes de Energia Elétrica , Eletrodos , Água
3.
Cancer Cell Int ; 21(1): 436, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412631

RESUMO

BACKGROUND: We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). METHOD AND MATERIALS: We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. RESULTS: We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). CONCLUSION: Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.

4.
J Pathol ; 241(3): 420-433, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27873317

RESUMO

We previously reported that activation of the B-cell-activating factor (BAFF) pathway upregulates nuclear factor-κB (NF-κB) and induces BCL3 and BCL10 nuclear translocation in Helicobacter pylori (HP)-independent gastric diffuse large B-cell lymphoma (DLBCL) tumours with evidence of mucosa-associated lymphoid tissue (MALT). However, the significance of BAFF expression in HP independence of gastric low-grade MALT lymphomas without t(11;18)(q21;q21) remains unexplored. Sixty-four patients who underwent successful HP eradication for localized HP-positive gastric MALT lymphomas without t(11;18)(q21;q21) were studied. BAFF expression was significantly higher in the HP-independent group than in the HP-dependent group [22/26 (84.6%) versus 8/38 (21.1%); p < 0.001]. Similarly, BAFF receptor (BAFF-R) expression (p = 0.004) and nuclear BCL3 (p = 0.004), BCL10 (p < 0.001), NF-κB (p65) (p = 0.001) and NF-κB (p52) (p = 0.005) expression were closely correlated with the HP independence of these tumours. Moreover, BAFF overexpression was significantly associated with BAFF-R expression and nuclear BCL3, BCL10, NF-κB (p65) and NF-κB (p52) expression. These findings were further validated in an independent cohort, including 40 HP-dependent cases and 18 HP-independent cases of gastric MALT lymphoma without t(11;18)(q21;q21). The biological significance of BAFF signalling in t(11;18)(q21;q21)-negative lymphoma cells was further studied in two types of lymphoma B cell: OCI-Ly3 [non-germinal centre B-cell origin DLBCL without t(11;18)(q21;q21) cell line] and MA-1 [t(14;18)(q32;q21)/IGH-MALT1-positive DLBCL cell line]. In both cell lines, we found that BAFF activated the canonical NF-κB and AKT pathways, and induced the formation of BCL10-BCL3 complexes, which translocated to the nucleus. BCL10 and BCL3 nuclear translocation and NF-κB (p65) transactivation were inhibited by either LY294002 or by silencing BCL3 or BCL10 with small interfering RNA. BAFF also activated non-canonical NF-κB pathways (p52) through tumour necrosis factor receptor-associated factor 3 degradation, NF-κB-inducing kinase accumulation, inhibitor of κB kinase (IKK) α/ß phosphorylation and NF-κB p100 processing in both cell lines. Our data indicate that the autocrine BAFF signal transduction pathway contributes to HP independence in gastric MALT lymphomas without the t(11;18)(q21;q21) translocation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Linfócitos B/metabolismo , Linfoma de Zona Marginal Tipo Células B/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Translocação Genética/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Helicobacter pylori , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinase Induzida por NF-kappaB
5.
Mol Pharm ; 11(8): 2777-86, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24950134

RESUMO

Recombinant arginine deiminase (rADI) has been used in clinical trials for arginine-auxotrophic cancers. However, the emergence of rADI resistance, due to the overexpression of argininosuccinate synthetase (AS), has introduced an obstacle in its clinical application. Here, we have proposed a strategy for the intracellular delivery of rADI, which depletes both extracellular and intracellular arginine, to restore the sensitivity of rADI-resistant cancer cells. In this study, the C terminus of heparin-binding hemagglutinin adhesion protein from Mycobacterium tuberculosis (HBHAc), which contains 23 amino acids, was used to deliver rADI into rADI-resistant human breast adenocarcinoma cells (MCF-7). Chemical conjugates (l- and d-HBHAc-SPDP-rADI) and a recombinant fusion protein (rHBHAc-ADI) were produced. l- and d-HBHAc-SPDP-rADI showed a significantly higher cellular uptake of rADI by MCF-7 cells compared to that of rADI alone. Cell viability was significantly decreased in a dose-dependent manner in response to l- and d-HBHAc-SPDP-rADI treatments. In addition, the ratio of intracellular concentration of citrulline to arginine in cells treated with l- and d-HBHAc-SPDP-rADI was significantly increased by 1.4- and 1.7-fold, respectively, compared with that obtained in cells treated with rADI alone (p < 0.001). Similar results were obtained with the recombinant fusion protein rHBHAc-ADI. Our study demonstrates that the increased cellular uptake of rADI by HBHAc modification can restore the sensitivity of rADI treatment in MCF-7 cells. rHBHAc-ADI may represent a novel class of antitumor enzyme with an intracellular mechanism that is independent of AS expression.


Assuntos
Hidrolases/administração & dosagem , Lectinas/química , Peptídeos/química , Proteínas Recombinantes de Fusão/administração & dosagem , Aminoácidos/química , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citrulina/química , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endocitose , Fluoresceína/química , Humanos , Células MCF-7 , Mycobacterium tuberculosis , Neoplasias/tratamento farmacológico
6.
Adv Sci (Weinh) ; 10(16): e2207047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060107

RESUMO

Supramolecular framework (SF) encourages the emergence of porous structures with molecular flexibility while the dimension and morphology controls are less involved even though critical factors are vital for various utilizations. Targeting this purpose, two isolated components are designed and their stepped combinations via ionic interaction, metal coordination, and hydrogen bond into framework assembly with two morphologic states are realized. The zinc coordination to an ionic complex of polyoxometalate with three cationic terpyridine ligands constructs 2D hexagonal SF structure. A further growth along perpendicular direction driven by hydrogen bonding between grafted mannose groups leads to 3D SF assemblies, providing a modulation superiority in one framework for multiple utilizations. The large area of multilayered SF sheet affords a filtration membrane for strict separation of nanoparticles/proteins under gently reduced pressures while the granular SF assembly demonstrates an efficient carrier to load and fix horse radish peroxidase with maintained activity for enzymatic catalysis.


Assuntos
Metais , Zinco , Metais/química , Zinco/química
7.
Chem Commun (Camb) ; 59(86): 12895-12898, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819264

RESUMO

A two-dimensional supramolecular framework with a tetragonal structure is constructed via host-guest interaction of a pillar[5]arene grafted polyanion with a modified porphyrin. The membrane of the framework with a chiral counterion exhibits enantiomeric selectivity during the filtration of racemic molecules with amino groups, demonstrating broadened potential in chiral separations.

8.
Nat Commun ; 14(1): 975, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810849

RESUMO

Synthetic framework materials have been cherished as appealing candidates for separation membranes in daily life and industry, while the challenges still remain in precise control of aperture distribution and separation threshold, mild processing methods, and extensive application aspects. Here, we show a two-dimensional (2D) processible supramolecular framework (SF) by integrating directional organic host-guest motifs and inorganic functional polyanionic clusters. The thickness and flexibility of the obtained 2D SFs are tuned by the solvent modulation to the interlayer interactions, and the optimized SFs with limited layers but micron-sized areas are used to fabricate the sustainable membranes. The uniform nanopores allow the membrane composed of layered SF to exhibit strict size retention for substrates with the rejection value of 3.8 nm, and the separation accuracy within 5 kDa for proteins. Furthermore, the membrane performs high charge selectivity for charged organics, nanoparticles, and proteins, due to the insertion of polyanionic clusters in the framework skeletons. This work displays the extensional separation potentials of self-assembled framework membranes comprising of small-molecules and provides a platform for the preparation of multifunctional framework materials due to the conveniently ionic exchange of the counterions of the polyanionic clusters.

9.
Cell Oncol (Dordr) ; 46(5): 1213-1234, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37166744

RESUMO

PURPOSE: In this study, we assessed whether the overexpression of MAP3K1 promotes the proliferation, migration, and invasion of breast cancer cells, which affect the prognosis of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative early stage breast cancer. METHODS: Two HR-positive, HER2-negative breast cancer cell lines (MCF7 and T-47D) overexpressing MAP3K1 were transfected with two MAP3K1 short hairpin RNA plasmids (shMAP3K1 [#3] and shMAP3K1 [#5]). The proliferation, migration, and invasion of these cells were then examined. We assessed whether shMAP3K1 affects the cell cycle, levels of downstream signaling molecules (ERK, JNK, p38 MAPK, and NF-κB), and sensitivity to chemotherapeutic and hormonal agents. To assess the anti-tumor effect of MAP3K1 knockdown in the breast cancer orthotopic model, MCF7 and T-47D cells treated with or without shMAP3K1 (#3) and shMAP3K1 (#5) were inoculated into the mammary fat pads of mice. In total, 182 patients with HR-positive, HER2-negative T1 and T2 breast cancer and 0-3 nodal metastases were included. Additionally, 73 patients with T1 and T2 breast cancer and negative nodes who received adjuvant endocrine therapy alone were selected as an independent validation cohort. RESULTS: In both cell lines, shMAP3K1 (#3) and shMAP3K1 (#5) significantly reduced cell growth, migration, and invasion by downregulating MMP-9 and by blocking the G2/M phase of the cell cycle and its regulatory molecule cyclin B1. Moreover, both shMAP3K1 (#3) and shMAP3K1 (#5) downregulated ERK-, JNK-, p38 MAPK-, and NF-κB-dependent gene transcription and enhanced the sensitivity of both cell lines to doxorubicin, docetaxel, and tamoxifen. We observed that both shMAP3K1 (#3) and shMAP3K1 (#5) inhibited tumor growth compared with that in the scrambled group of MCF7 and T-47D cell orthotopic tumors. Patients with MAP3K1 overexpression exhibited significantly poorer 10-year disease-free survival (DFS) (70.4% vs. 88.6%, p = 0.003) and overall survival (OS) (81.9% vs. 96.3%, p = 0.001) than those without MAP3K1 overexpression. Furthermore, phospho-ERK (p < 0.001) and phospho-JNK (p < 0.001) expressions were significantly associated with MAP3K1 expression, and both phospho-ERK and phospho-JNK expressions were significantly correlated with poor 10-year DFS and OS. These biological findings, including a significant association between DFS and OS, and the expressions of MAP3K1, phospho-ERK, and phospho-JNK were further validated in an independent cohort. Multivariate analysis identified MAP3K1 expression as an independent poor prognostic factor for DFS and OS. CONCLUSION: Our results indicate that the overexpression of MAP3K1 plays a major role in the poor prognosis of HR-positive, HER2-negative early stage breast cancer.


Assuntos
Neoplasias da Mama , MAP Quinase Quinase Quinase 1 , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , NF-kappa B , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Tamoxifeno , Intervalo Livre de Doença , Proteínas Quinases p38 Ativadas por Mitógeno , MAP Quinase Quinase Quinase 1/genética
10.
ACS Appl Mater Interfaces ; 14(4): 5194-5202, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067040

RESUMO

Enhanced conversion of carbon dioxide (CO2) for cycloaddition with epoxide derivatives is highly desired in organic synthesis and green chemistry, yet it is still a challenge to obtain satisfactory activity under mild reaction conditions of temperature and pressure. For this purpose, an unexploited strategy is proposed here by incorporating near-infrared (NIR) photothermal properties into multicomponent catalysts. Through the electrostatic adsorption of Co- or Ce-substituted polyoxometalate (POM) clusters on the surface of graphene oxide (GO) with covalently grafted polyethyleneimine (PEI), a series of composite catalysts POMs@GO-PEI are prepared. The structural and property characterizations demonstrate the synergistic advantages of the catalysts bearing Lewis acids and bases and local NIR photothermal heating from the GO matrix for dramatically enhanced CO2 cycloaddition. Noticeably, while the turnover frequency increases up to 2718 h-1, the heterogeneous catalysts exhibit photothermal stability and recyclability. With this method, the onsite NIR photothermal transformation becomes extendable to more green reaction processes.

11.
Oxid Med Cell Longev ; 2022: 7957255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092168

RESUMO

Abdominal or pelvic radiotherapy (RT) often results in small intestinal injury, such as apoptosis of epithelial cells and shortening of the villi. Atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has many biological effects including cholesterol reduction, protection from cell damage, and autophagy activation. To reduce the extent of radiotherapy- (RT-) induced enteritis, we investigated the protective effects of atorvastatin against RT-induced damage of the intestinal tract. In this study, C57BL/6 mice were randomly distributed into the following groups (n = 8 per group): (1) control group: mice were fed water only, (2) atorvastatin group (Ator): mice were administered atorvastatin, (3) irradiation group (IR): mice received abdominal RT, (4) Ator+IR group: mice received abdominal RT following atorvastatin administration, and (5) Ator+IR+3-MA group: abdominal RT following atorvastatin and 3-methyladenine (an autophagy inhibitor) administration. Based on the assessment of modified Chiu's injury score and villus/crypt ratio, we found that atorvastatin administration significantly reduced intestinal mucosal damage induced by RT. Atorvastatin treatment reduced apoptosis (cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase), DNA damage (γH2AX and 53BP1), oxidative stress (OS, 4-hydroxynonenal), inflammatory molecules (phospho-NF-κB p65 and TGF-ß), fibrosis (collagen I and collagen III), barrier leakage (claudin-2 and fluorescein isothiocyanate-dextran), disintegrity (fatty acid-binding protein 2), and dysfunction (lipopolysaccharide) caused by RT in small intestinal tissue. In addition, atorvastatin upregulated the expression of autophagy-active molecules (LC3B), antioxidants (heme oxygenase 1 and thioredoxin 1), and tight junction proteins (occludin and zonula occludens 1). However, the biological functions of atorvastatin in decreasing RT-induced enteritis were reversed after the administration of 3-MA; the function of antioxidant molecules and activity of thioredoxin reductase were independent of autophagy activation. Our results indicate that atorvastatin can effectively relieve RT-induced enteritis through autophagy activation and associated biological functions, including maintaining integrity and function and decreasing apoptosis, DNA damage, inflammation, OS, and fibrosis. It also acts via its antioxidative capabilities.


Assuntos
Antioxidantes , Autofagia , Animais , Antioxidantes/farmacologia , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Fibrose , Camundongos , Camundongos Endogâmicos C57BL
12.
J Biomed Sci ; 18: 25, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21453546

RESUMO

BACKGROUND: Sensitivity of cancer cells to recombinant arginine deiminase (rADI) depends on expression of argininosuccinate synthetase (AS), a rate-limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively. METHODS: We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7) as a way to restore sensitivity to rADI in resistant cells. The expression of AS at levels of mRNA and protein was determined to understand the effect of RNA interference. Cell viability, cell cycle, and possible mechanism of the restore sensitivity of AS RNA interference in rADI treated cancer cells were evaluated. RESULTS: AS DNA was present in all cancer cell lines studied, however, the expression of this enzyme at the mRNA and protein level was different. In two rADI-resistant cell lines, one with endogenous AS expression (MCF-7 cells) and one with induced AS expression (HeLa cells), AS small interference RNA (siRNA) inhibited 37-46% of the expression of AS in MCF-7 cells. ASsiRNA did not affect cell viability in MCF-7 which may be due to the certain amount of residual AS protein. In contrast, ASsiRNA down-regulated almost all AS expression in HeLa cells and caused cell death after rADI treatment. Permanently down-regulated AS expression by short hairpin RNA (shRNA) made MCF-7 cells become sensitive to rADI via the inhibition of 4E-BP1-regulated mTOR signaling pathway. CONCLUSIONS: Our results demonstrate that rADI-resistance can be altered via AS RNA interference. Although transient enzyme down-regulation (siRNA) did not affect cell viability in MCF-7 cells, permanent down-regulation (shRNA) overcame the problem of rADI-resistance due to the more efficiency in AS silencing.


Assuntos
Antineoplásicos/farmacologia , Argininossuccinato Sintase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Hidrolases/farmacologia , Neoplasias/enzimologia , Interferência de RNA , Arginina/genética , Arginina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citrulina/metabolismo , Expressão Gênica , Células HeLa , Humanos , Neoplasias/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/farmacologia
13.
Dalton Trans ; 50(15): 5080-5098, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33734264

RESUMO

Polyoxometalates (POMs), as a typical class of discrete metal oxide clusters that are known in inorganic and structural chemistry since long, have displayed more and more interesting applications over recent years. However, in comparison to the chemical synthesis, the photochemical, electrochemical, and magnetic properties, the structural asymmetry, and relative characteristic investigations arising therefrom are far behind even if they are very important for functional materials, especially in solution systems. One of the main reasons is that it is hard to control and maintain a stable chiral state of POMs to carry out further corresponding performances. Aiming to overcome these disadvantages, the main concerns of this review are to discuss the generation of the chirality for discrete metal oxide clusters, chirality transfer via a supramolecular approach, chirality amplification in self-assemblies, and the related functional properties such as photochromism, catalysis, and bioactivities in solutions. Considering that some previous reviews dealt with chiral structures and packing architectures in the crystalline solids of POMs, this article only concentrates on the induced chirality and material properties in solution systems, which have been more active recently but no review article has been involved in this interesting area.

14.
J Clin Invest ; 117(9): 2496-505, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17710229

RESUMO

Clinical use of prostaglandin synthase-inhibiting NSAIDs is associated with the development of hypertension; however, the cardiovascular effects of antagonists for individual prostaglandin receptors remain uncharacterized. The present studies were aimed at elucidating the role of prostaglandin E2 (PGE2) E-prostanoid receptor subtype 1 (EP1) in regulating blood pressure. Oral administration of the EP1 receptor antagonist SC51322 reduced blood pressure in spontaneously hypertensive rats. To define whether this antihypertensive effect was caused by EP1 receptor inhibition, an EP1-null mouse was generated using a "hit-and-run" strategy that disrupted the gene encoding EP1 but spared expression of protein kinase N (PKN) encoded at the EP1 locus on the antiparallel DNA strand. Selective genetic disruption of the EP1 receptor blunted the acute pressor response to Ang II and reduced chronic Ang II-driven hypertension. SC51322 blunted the constricting effect of Ang II on in vitro-perfused preglomerular renal arterioles and mesenteric arteriolar rings. Similarly, the pressor response to EP1-selective agonists sulprostone and 17-phenyltrinor PGE2 were blunted by SC51322 and in EP1-null mice. These data support the possibility of targeting the EP1 receptor for antihypertensive therapy.


Assuntos
Hipertensão/metabolismo , Hipertensão/patologia , Receptores de Prostaglandina E/metabolismo , Angiotensina II/farmacologia , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase C/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/deficiência , Receptores de Prostaglandina E Subtipo EP1
15.
Bioconjug Chem ; 21(4): 679-89, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20222677

RESUMO

Folic acid can be covalently conjugated to chitosan molecules via its gamma-carboxyl moiety and thus retain a high affinity for colorectal cancer cells bearing folate receptor overexpression. Colorectal cancer is one of the leading causes of malignant death and often goes undetected with current colonoscopy practices. Improved methods of detecting dysplasia and tumors during colonoscopy will improve mortality. A folic acid conjugated chitosan nanoparticle as a suitable vehicle for carrying 5-aminolaevulinic acid (5-ALA) is developed to enhance the detection of colorectal cancer cells in vivo after a short-term uptake period. Chitosan can be successfully conjugated with folic acid to produce folic acid-chitosan conjugate, which is then loaded with 5-ALA to create nanoparticles (fCNA). The loading efficiency of 5-ALA in fCNA particles and the z-average diameter were in the range 35-40% and 100 nm, respectively. The zeta-potential for fCNA was 20 mV, enough to keep the nanoparticle stable without aggregation. The fCNA is then incubated with HT29 and Caco-2 colorectal cancer cell lines overexpressing folate receptor on the surface of the cell membrane to determine the rate of accumulation of protoporphyrin IX (PpIX). The results show that fCNA can be taken up more easily by HT29 and Caco-2 cell lines after short-term uptake period, most likely via receptor-mediated endocytosis, and the PpIX accumulates in cancer cells as a function of the folate receptor expression and the folic acid modification. Therefore, the folic acid-chitosan conjugate appears to be an ideal vector for colorectal-specific delivery of 5-ALA for fluorescent endoscopic detection.


Assuntos
Ácido Aminolevulínico/metabolismo , Quitosana/química , Neoplasias Colorretais/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Nanopartículas/química , Protoporfirinas/metabolismo , Ácido Aminolevulínico/química , Células CACO-2 , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Quitosana/metabolismo , Neoplasias Colorretais/patologia , Receptores de Folato com Âncoras de GPI , Humanos , Protoporfirinas/química , Receptores de Superfície Celular/metabolismo
16.
J Econ Entomol ; 113(5): 2343-2353, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32785577

RESUMO

The psyllid Cacopsylla chinensis (Yang & Li) (Hemiptera: Psyllidae) is a serious pest of pears in China. To determine and contrast the fitness of the psyllid on two endemic cultivars of Pyrus bretschneideri (i.e., BHXS and BSL) and two introduced cultivars of Pyrus communis (i.e., CB and CRB), we analyzed data on the development, survival, and fecundity from C. chinensis individuals reared on the four cultivars. The age-stage, two-sex life table theory was used in order to enable the inclusion of males in the analysis as well as a means of identifying the variation in developmental durations among individuals. Results indicated that C. chinensis can successfully develop and reproduce on all four pear cultivars. However, based on the lower preadult survival rate, longer preadult duration, longer total preoviposition period (TPOP), and lower fecundity that occurred on both cultivars of P. communis, these two cultivars are less favorable hosts for C. chinensis than the P. bretschneideri cultivars. The lower intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) on CB and CRB pears showed these two introduced cultivars are more resistant to C. chinensis than the endemic BHXS and BSL pears. These resistant cultivars would be appropriate candidates for managing C. chinensis. We used the bootstrap technique to estimate the uncertainty of the population parameters (r, λ, R0, etc.), while also demonstrating that it can be used for estimating the 0.025 and 0.975 percentile confidence intervals of the age of survival rate.


Assuntos
Hemípteros , Pyrus , Rosaceae , Rosales , Animais , China , Intervalos de Confiança , Tábuas de Vida
18.
Cancers (Basel) ; 11(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430901

RESUMO

Our previous study demonstrated that administration of NVP-BEZ235 (BEZ235), a dual PI3K/mTOR inhibitor, before radiotherapy (RT) enhanced the radiotherapeutic effect in colorectal cancer (CRC) cells both in vitro and in vivo. Here, we evaluated whether maintenance BEZ235 treatment, after combinatorial BEZ235 + RT therapy, prolonged the antitumor effect in CRC. K-RAS mutant CRC cells (HCT116 and SW480), wild-type CRC cells (HT29), and HCT116 xenograft tumors were separated into the following six study groups: (1) untreated (control); (2) RT alone; (3) BEZ235 alone; (4) RT + BEZ235; (5) maintenance BEZ235 following RT + BEZ235 (RT + BEZ235 + mBEZ235); and (6) maintenance BEZ235 following BEZ235 (BEZ235 + mBEZ235). RT + BEZ235 + mBEZ235 treatment significantly inhibited cell viability and increased apoptosis in three CRC cell lines compared to the other five treatments in vitro. In the HCT116 xenograft tumor model, RT + BEZ235 + mBEZ235 treatment significantly reduced the tumor size when compared to the other five treatments. Furthermore, the expression of mTOR signaling molecules (p-rpS6 and p-eIF4E), DNA double-strand break (DSB) repair-related molecules (p-ATM and p-DNA-PKcs), and angiogenesis-related molecules (VEGF-A and HIF-1α) was significantly downregulated after RT + BEZ235 + mBEZ235 treatment both in vitro and in vivo when compared to the RT + BEZ235, RT, BEZ235, BEZ235 + mBEZ235, and control treatments. Cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), 53BP1, and γ-H2AX expression in the HCT116 xenograft tissue and three CRC cell lines were significantly upregulated after RT + BEZ235 + mBEZ235 treatment. Maintenance BEZ235 treatment in CRC cells prolonged the inhibition of cell viability, enhancement of apoptosis, attenuation of mTOR signaling, impairment of the DNA-DSB repair mechanism, and downregulation of angiogenesis that occurred due to concurrent BEZ235 and RT treatment.

19.
Biomaterials ; 151: 38-52, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29059540

RESUMO

BACKGROUND: Carboplatin, an antineoplastic agent, binds DNA and enhances radiotherapy (RT) effects. Carboplatin-loaded hydrogel (oxidized hyaluronic acid/adipic acid dihydrazide) enables the sustained drug release and facilitates the synergistic effect with RT. PURPOSE: We investigated the effectiveness and convenience of hydrogel carboplatin combined with RT for mice glioma. MATERIALS AND METHODS: Mouse glioma cells (ALTS1C1) were subcutaneously implanted in the right thigh of C57BL/6 mice on Day 0. The mice were categorized by treatments: sham, hydrogel, hydrogel carboplatin, aqueous carboplatin, RT, hydrogel carboplatin/RT, and aqueous carboplatin/RT. Hydrogel carboplatin (300 µg single dose on Day 7) or aqueous carboplatin (100 µg daily dose on Days 7, 8, and 9) was administered via intratumoral injection. RT was delivered a daily dose of 10 Gy on Days 8 and 9. RESULTS: For mice administered hydrogel carboplatin/RT versus those administered aqueous carboplatin/RT, the 24-day tumor growth control rate and 104-day recurrence-free survival rate were 100% and 50% versus 100% and 66.7% (p = 0.648), respectively. However, mice receiving other treatments showed tumor progression by Day 24 and died within 40 days of tumor cell implantation. CONCLUSIONS: Hydrogel carboplatin simplified intratumoral drug delivery and remained the synergistic effects with RT, which is potential for clinical applications.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Carboplatina/farmacologia , Glioma/tratamento farmacológico , Glioma/radioterapia , Hidrogéis/química , Células 3T3 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Carboplatina/química , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Combinada , Preparações de Ação Retardada , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Injeções Intralesionais , Teste de Materiais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
20.
Sci Rep ; 7(1): 14333, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084984

RESUMO

First-line antibiotic treatment for eradicating Helicobacter pylori (HP) infection is effective in HP-positive low-grade gastric mucosa-associated lymphoid tissue lymphoma (MALToma), but its role in HP-negative cases is uncertain. In this exploratory retrospective study, we assessed the outcome and potential predictive biomarkers for 25 patients with HP-negative localized gastric MALToma who received first-line HP eradication (HPE) therapy. An HP-negative status was defined as negative results on histology, rapid urease test, 13C urea breath test, and serology. We observed an antibiotic response (complete remission [CR], number = 8; partial remission, number = 1) in 9 (36.0%) out of 25 patients. A t(11;18)(q21;q21) translocation was detected in 7 (43.8%) of 16 antibiotic-unresponsive cases, but in none of the 9 antibiotic-responsive cases (P = 0.027). Nuclear BCL10 expression was significantly higher in antibiotic-unresponsive tumors than in antibiotic-responsive tumors (14/16 [87.5%] vs. 1/9 [11.1%]; P = 0.001). Nuclear NF-κB expression was also significantly higher in antibiotic-unresponsive tumors than in antibiotic-responsive tumors (12/16 [75.0%] vs. 1/9 [11.1%]; P = 0.004). A substantial portion of patients with HP-negative gastric MALToma responded to first-line HPE. In addition to t(11;18)(q21;q21), BCL10 and NF-κB are useful immunohistochemical biomarkers to predict antibiotic-unresponsive status in this group of tumors.


Assuntos
Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Mucosa Gástrica/patologia , Helicobacter pylori/fisiologia , Tecido Linfoide/patologia , Linfoma/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína 10 de Linfoma CCL de Células B/genética , Proteína 10 de Linfoma CCL de Células B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA