Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(13): 3377-3384, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35639705

RESUMO

MOTIVATION: Rapid developments of single-cell RNA sequencing technologies allow study of responses to external perturbations at individual cell level. However, in many cases, it is hard to collect the perturbed cells, such as knowing the response of a cell type to the drug before actual medication to a patient. Prediction in silicon could alleviate the problem and save cost. Although several tools have been developed, their prediction accuracy leaves much room for improvement. RESULTS: In this article, we propose scPreGAN (Single-Cell data Prediction base on GAN), a deep generative model for predicting the response of single-cell expression to perturbation. ScPreGAN integrates autoencoder and generative adversarial network, the former is to extract common information of the unperturbed data and the perturbed data, the latter is to predict the perturbed data. Experiments on three real datasets show that scPreGAN outperforms three state-of-the-art methods, which can capture the complicated distribution of cell expression and generate the prediction data with the same expression abundance as the real data. AVAILABILITY AND IMPLEMENTATION: The implementation of scPreGAN is available via https://github.com/JaneJiayiDong/scPreGAN. To reproduce the results of this article, please visit https://github.com/JaneJiayiDong/scPreGAN-reproducibility. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
BMC Cancer ; 21(1): 1307, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876051

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the most predominant primary malignant tumor among worldwide, especially in China. To date, the successful treatment remains a mainly clinical challenge, it is imperative to develop successful therapeutic agents. METHODS: The anti-proliferative effect of ivermectin on ESCC is investigated in cell model and in nude mice model. Cell apoptosis was assessed using flow cytometry, TUNEL assay and western blotting. Mitochondrial dysfunction was determined by reactive oxygen species accumulation, mitochondrial membrane potential and ATP levels. RESULTS: Our results determined that ivermectin significantly inhibited the proliferation of ESCC cells in vitro and in vivo. Furthermore, we found that ivermectin markedly mediated mitochondrial dysfunction and induced apoptosis of ESCC cells, which indicated the anti-proliferative effect of ivermectin on ESCC cells was implicated in mitochondrial apoptotic pathway. Mechanistically, ivermectin significantly triggered ROS accumulation and inhibited the activation of NF-κB signaling pathway and increased the ratio of Bax/Bcl-2. CONCLUSIONS: These finding indicated that ivermectin has significant anti-tumour potential for ESSC and may be a potential therapeutic candidate against ESCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Ivermectina/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Front Oncol ; 12: 826778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734583

RESUMO

Objective: To investigate the inherited mutations and their association with clinical features and treatment response in young-onset prostate cancer patients. Method: Targeted gene sequencing on 139 tumor susceptibility genes was conducted with a total of 24 patients diagnosed with PCa under the age of 63 years old. Meanwhile, the related clinical information of those patients is collected and analyzed. Results: Sixty-two germline mutations in 45 genes were verified in 22 patients. BRCA2 (20.8%) and GJB2 (20.8%) were found to be the most frequently mutated, followed by CHEK2, BRCA1, PALB2, CDKN2A, HOXB13, PPM1D, and RECQL (8.3% of each, 2/24). Of note, 58.3% (14/24) patients carry germline mutations in DNA repair genes (DRGs). Four families with HRR (homologous recombination repair)-related gene mutations were described and analyzed in detail. Two patients with BRCA2 mutation responded well to the combined treatment of androgen deprivation therapy (ADT) and radiotherapy/chemotherapy. Conclusion: Mutations in DRGs are more prevalent in early-onset PCa with advanced clinical stages, and these patients had shorter progression-free survival. ADT Combined with either radiotherapy or chemotherapy may be effective in treating PCa caused by HRR-related gene mutations.

4.
Oncogene ; 41(30): 3735-3746, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35750756

RESUMO

The dynamics of mitochondrial biogenesis regulation is critical in maintaining cellular homeostasis for immune regulation and tumor prevention. Here, we report that mitochondrial biogenesis disruption through TFAM reduction significantly impairs mitochondrial function, induces autophagy, and promotes esophageal squamous cell carcinoma (ESCC) growth. We found that TFAM protein reduction promotes mitochondrial DNA (mtDNA) release into the cytosol, induces cytosolic mtDNA stress, subsequently activates the cGAS-STING signaling pathway, thereby stimulating autophagy and ESCC growth. STING depletion or mtDNA degradation by DNase I abrogates mtDNA stress response, attenuates autophagy, and decreases the growth of TFAM depleted cells. In addition, autophagy inhibitor also ameliorates mitochondrial dysfunction-induced activation of the cGAS-STING signaling pathway and ESCC growth. In conclusion, our results indicate that mtDNA stress induced by mitochondria biogenesis perturbation activates the cGAS-STING pathway and autophagy to promote ESCC growth, revealing an underappreciated therapeutic strategy for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Autofagia/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases/genética , Fatores de Transcrição/genética
5.
Int J Biochem Cell Biol ; 77(Pt A): 109-119, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27276245

RESUMO

Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/ß-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis.


Assuntos
MicroRNAs/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT5/metabolismo , Transcrição Gênica , Células 3T3-L1 , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Camundongos , Mutação , Regulação para Cima
6.
FEBS Lett ; 590(6): 795-807, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26918315

RESUMO

Despite extensive research on osteoblast differentiation and proliferation in mesenchymal stem cells (MSCs), the accurate mechanism remains to be further elucidated. MicroRNAs have been reported to be key regulators of osteoblast differentiation and proliferation. Here, we found that miR-144-3p is down-regulated during osteoblast differentiation of C3H10T1/2 cells. Overexpression of miR-144-3p inhibited osteogenic differentiation, whereas inhibition of miR-144-3p reversed this process. Furthermore, miR-144-3p inhibited the proliferation of C3H10T1/2 cells by arresting cells at the G0/G1 phase. Results from bioinformatics analysis, luciferase assay and western blotting demonstrated that miR-144-3p directly targeted Smad4. Additionally, Smad4 knockdown blocks the effects of miR-144-3p inhibitor. Therefore, we conclude that miR-144-3p negatively regulates osteogenic differentiation and proliferation of C3H10T1/2 cells by targeting Smad4.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Proteína Smad4/genética , Proteína Smad4/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/antagonistas & inibidores , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Smad4/antagonistas & inibidores
7.
Sci Rep ; 6: 27914, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27297132

RESUMO

Labor is initiated as a result of hormonal changes that are induced by the activation of the inflammatory response and a series of biochemical events. The amnion, which is the primary source of prostaglandin E2 (PGE2), plays an important role in the process of labor. In the present study, we uncovered a pathway in which c-fos, cyclooxygenase-2 (COX2) and miR-144 function as hormonal modulators in the amnions of pregnant mice and humans. miR-144 down-regulated the synthesis of PGE2 during pregnancy by directly and indirectly inhibiting COX2 expression and by directly inhibiting the expression of c-fos, a transcriptional activator of COX2 and miR-144. Estrogen (E2) activated c-fos, thus promoting the expression of miR-144 and COX2 during labor. However, the increase in COX2 resulted in the partial inhibition of COX2 expression by miR-144, thereby slightly reducing the secretion of PGE2. These observations suggest that miR-144 inhibits PGE2 secretion by section to prevent the initiation of premature labor. Up-regulated expression of miR-144, c-fos and COX2 was also observed both in preterm mice and in mice undergoing normal labor. In summary, miR-144, c-fos and COX2 play important roles in regulating PGE2 secretion in the amnion during pregnancy and labor.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , MicroRNAs/genética , Trabalho de Parto Prematuro/genética , Gravidez/imunologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Linhagem Celular , Estrogênios/metabolismo , Feminino , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos , Trabalho de Parto Prematuro/imunologia , Proteínas Proto-Oncogênicas c-fos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA