Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biomacromolecules ; 25(1): 134-142, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38145887

RESUMO

Hydrogels with intrinsic antimicrobial capabilities based on natural strategies have been studied as a hot topic in biomedicine. Nevertheless, it is highly challenging to thoroughly develop a bacteriostatic natural hydrogel. Borneol as a traditional Chinese medicine possesses a unique broad-spectrum antibacterial activity under a membrane-breaking mechanism. In this study, a range of fully natural antibacterial hydrogels are designed and synthesized via the Schiff base cross-linking of carboxymethyl chitosan and dialdehyde dextran grafted natural borneol. The borneol with three configurations is hydrophilically modified onto dextran to boost its antibacterial activity. Also, the synergism of hydrophilic-modified borneol groups and positively charged ammonium ions of carboxymethyl chitosan make the hydrogels totally constrict the E. coli and S. aureus growth during 24 h. Furthermore, the hydrogels exhibit good in vitro cytocompatibility through cytotoxicity, protein adhesion, and hemolytic tests. In view of the injectability, the hydrogels can be delivered to the target site through a minimally invasive route. In short, this work offers a potential tactic to develop antibacterial hydrogels for the treatment of topical wound infections.


Assuntos
Quitosana , Quitosana/farmacologia , Hidrogéis/farmacologia , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892093

RESUMO

One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.


Assuntos
Processamento Alternativo , Cucumis melo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
3.
J Mol Liq ; 379: 121658, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36969830

RESUMO

Lycorine (Lyc) and its hydrochloride (Lyc∙HCl) as effective drugs can fight against many diseases including novel coronavirus (COVID-19) based on their antiviral and antitumor mechanism. Beta-cyclodextrin (ß-CD) is considered a promising carrier in improving its efficacy while minimizing cytotoxicity due to the good spatial compatibility with Lyc. However, the detailed mechanism of inclusion interaction still remains to be further evaluated. In this paper, six inclusion complexes based on ß-CDs, Lyc and Lyc∙HCl were processed through ultrasound in the mixed solvent of ethanol and water, and their inclusion behavior was characterized after lyophilization. It was found that the inclusion complexes based on sulfobutyl-beta-cyclodextrin (SBE-ß-CD) and Lyc∙HCl had the best encapsulation effect among prepared inclusion complexes, which may be attributed to the electrostatic interaction between sulfonic group of SBE-ß-CD and quaternary amino group of Lyc∙HCl. Moreover, the complexes based on SBE-ß-CD displayed pH-sensitive drug release property, good solubilization, stability and blood compatibility, indicating their potential as suitable drug carriers for Lyc and Lyc∙HCl.

4.
Biomacromolecules ; 23(3): 1278-1290, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35171559

RESUMO

Strong mechanical performance, appropriate adhesion capacity, and excellent biocompatibility of conductive hydrogel-based sensors are of great significance for their application. However, conventional conductive hydrogels usually exhibit insufficient mechanical strength and adhesion. In addition, they will lose flexibility and conductivity under subzero temperature and a dry environment owing to inevitable freezing and evaporation of water. In this study, a tough, flexible, self-adhesive, long-term moisturizing, and antifreezing organohydrogel was prepared, which was composed of gelatin, zwitterionic poly [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) (PSBMA), MXene nanosheets, and glycerol. Natural gelatin was incorporated to enhance mechanical performance via the entanglement of a physical cross-linked network and a PSBMA network, which was also used as a stabilizer to disperse MXene into the organohydrogel. Zwitterionic PSBMA endowed the organohydrogel with good adhesion and self-healing properties. Long-term moisturizing properties and antifreeze tolerance could be achieved owing to the synergistic water retention capacity of PSBMA and glycerol. The resulting PSBMA-gelatin-MXene-glycerol (PGMG) organohydrogel exhibited high mechanical fracture strength (0.65 MPa) and stretchability (over 1000%), excellent toughness (3.87 MJ/m3), strong and repeated adhesion to diverse substrates (e.g., paper, glass, silicon rubber, iron, and pig skin), good fatigue resistance (under the cyclic stretching-releasing process), and rapid recovery capacity. Moreover, the PGMG organohydrogel showed good stability under -40 °C. The sensor based on PGMG organohydrogel could tightly attach to the human skin and real-time-monitor the motions of joints (e.g., bending of the finger, wrist, elbow, and knee) and the change in mood such as smiling and frowning. Therefore, PGMG organohydrogels have a huge potential for wearable sensors under room temperature or extreme environments.


Assuntos
Gelatina , Dispositivos Eletrônicos Vestíveis , Adesivos , Animais , Glicerol/química , Hidrogéis/química , Cimentos de Resina , Suínos , Água
5.
Infect Immun ; 89(10): e0012221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097505

RESUMO

Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.


Assuntos
Imunidade Inata/imunologia , Complexo Antígeno L1 Leucocitário/imunologia , Periodontite/imunologia , Perda do Osso Alveolar/imunologia , Animais , Disbiose/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Biomacromolecules ; 22(3): 1220-1230, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586969

RESUMO

Multifunctional hydrogel with outstanding conductivity and mechanical flexibility has received enormous attention as wearable electronic devices. However, fabricating transparent, ultrastretchable, and biocompatible hydrogel with low-temperature stability still remains a tremendous challenge. In this study, an ultrastretchable, highly transparent, and antifreezing zwitterionic-based electronic sensor is developed by introducing zwitterionic proline (ZP) into gellan gum/polyacrylamide (GG/PAAm) double network (DN) hydrogel. The existence of ZP endows the hydrogel with remarkable frost resistance. The toughness and transparency of zwitterionic Ca-GG/PAAm-ZP DN hydrogel can be maintained down to -40 °C. Also, the zwitterionic hydrogel shows good biocompatibility and protein adsorption resistance. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor can accurately monitor human motions (such as speaking and various joint bendings) under a broad temperature range from -40 to 25 °C. The zwitterionic Ca-GG/PAAm-ZP DN hydrogel-based strain sensor will be of immense value in the field of wearable electronic devices, especially for extreme environment applications.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Congelamento , Humanos , Movimento (Física)
7.
Macromol Rapid Commun ; 42(19): e2100324, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254708

RESUMO

As a new member of the 2D material family, MXene integrates high metallic conductivity and hydrophilic property simultaneously. It shows tremendous potential in fields of energy storage, sensing, electromagnetic shielding, and so forth. Due to the abundant surface functional groups, the physical and chemical properties of MXene can be tuned by the formation of MXene-polymer composites. The introduction of polymers can expand the interlayer spacing, reduce the distance of ion/electron transport, improve the surface hydrophilicity, and thus guide the assembly of MXene-polymer structures. Herein, the preparation strategies of MXene-polymer composites including physical mixing, surface modification, such as anchoring through TiN and Ti-O-C bonds, bonding through esterification, grafting functional groups through TiOSi/TiOP bonds, photograft reaction, as well as in situ polymerization are highlighted. In addition, the possible mechanisms for each strategy are explained. Furthermore, the applications of MXene-polymer composites obtained by different preparation strategies are summarized. Finally, perspectives and challenges are presented for the designs of MXene-polymer composites.


Assuntos
Polímeros , Titânio , Condutividade Elétrica , Interações Hidrofóbicas e Hidrofílicas , Polimerização
8.
Macromol Rapid Commun ; 41(13): e2000185, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32500629

RESUMO

Hydrogel-based sensors have attracted enormous interest due to their broad applications in wearable devices. However, existing hydrogel-based sensors cannot integrate satisfying mechanical performances with excellent conductivity to meet the requirements for practical application. Herein, an ionically conductive hydrogel with high strength, fast self-recovery, and low residual strain is constructed through a facile soaking strategy. The proposed ionically conductive double network hydrogel is achieved by combining chemically crosslinked polyacrylamide and physically crosslinked gelatin network followed by sodium citrate solution immersing. The obtained hydrogel has a tensile strength of 1.66 MPa and an elongation of 849%. The ionically conductive hydrogels can be utilized as both strain and pressure sensors with high sensitivity. Moreover, they can be used as ionic skin to monitor various human movements precisely, demonstrating their promising potential in wearable devices and flexible electronics.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Íons , Resistência à Tração
9.
Mikrochim Acta ; 187(8): 455, 2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683571

RESUMO

An ultrasensitive electrochemiluminescence biosensor was established based on the Zn-MOF/GO nanocomposite. Ag(I)-embedded DNA complexes were used as a signal amplification reagent. In this work, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Zn2+ were integrated into a porphyrin paddlewheel framework (Zn-MOF) by a hydrothermal method. The synthesized Zn-MOF material has electrochemiluminescence property, and the luminescence intensity is improved after being composited with graphene oxide (GO). Based on the composite material, we constructed an ultrasensitive ECL biosensor for the p53 antibody detection. The composite material acted as an admirable substrate and then loaded plenty of p53 antigens to recognize the target (p53 antibody) accurately. Because of the bridging effect of streptavidin and biotin-conjugated goat anti-rabbit IgG (bio-ab2), the rich-C DNA with positive correlation with the target was modified on the electrode and then captured the co-reactant accelerator Ag+ to amplify the signal. Therefore, the ECL biosensor response increases with increasing p53 antibody concentration. In the range 0.1 fg/mL-0.01 ng/mL, the response signal of the biosensor has a good linear relationship with the p53 antibody concentration. The detection limit is 0.03 fg/mL (S/N = 3). Impressively, the biosensor not only featured high sensitivity, good stability, and excellent specificity for the detection of p53 antibody, but also provides a new way for early detection of cancer. Graphical abstract Schematic representation of the electrochemiluminescence sensor based on a Zn-MOF/GO nanocomposite, which can be applied to the determination of p53 antibody.


Assuntos
Anticorpos/análise , Técnicas Biossensoriais/métodos , DNA/química , Estruturas Metalorgânicas/química , Nanocompostos/química , Prata/química , Anticorpos/imunologia , Técnicas Eletroquímicas/métodos , Grafite/química , Proteínas Imobilizadas/imunologia , Limite de Detecção , Medições Luminescentes/métodos , Metaloporfirinas/química , Proteína Supressora de Tumor p53/imunologia , Zinco/química
10.
Langmuir ; 35(5): 1475-1482, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30142980

RESUMO

Zwitterionic sulfobetaine (SB) and carboxybetaine (CB) have been extensively investigated for their noticeable antifouling properties. Both SB and CB have cationic and anionic groups in the molecule, but they differ in negatively charged groups. Molecular simulations have been conducted to investigate the different properties induced by structure changes. However, few studies have focused on the differences between SB and CB materials, especially zwitterionic polysaccharides. Two zwitterionic sulfobetaine and carboxybetaine dextran hydrogels were designed and used as models to compare their properties. Results showed that the equilibrium swelling ratios of the SB-DEX hydrogels were much higher than CB-DEX ones, and larger interior pores were observed in the SB-DEX hydrogels due to their higher hydrophilicity. The rheological storage modulus of the SB-DEX hydrogels was lower than that of CB-DEX ones as a result of higher water content of SB-DEX. These results were consistent with molecular modeling. Additionally, both CB-DEX and SB-DEX had remarkable biocompatibilities, and the in vitro release studies showed that the SB-DEX and CB-DEX hydrogels released DOX in a sustained manner under acidic condition (pH 5.0), indicating their promise as an effective drug-delivery system.

11.
Langmuir ; 34(8): 2585-2594, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29381365

RESUMO

Application of biocatalytic membrane is promising in food, pharmaceutical, and water treatment industries, whereas enzyme immobilization is the key step of biocatalytic membrane preparation. Thus, how to minimize the negative effect of immobilization on enzyme performance is required to answer. In this work, we proposed a platform for biocatalytic membrane preparation and immobilization mechanism investigation based on polydopamine (PDA) coating, which was demonstrated by immobilizing five commonly used enzymes (laccase, glucose oxidase, lipase, pepsin, and dextranase) on three commercially available membranes via three immobilization mechanisms (electrostatic attraction, covalent bonding, and hydrophobic adsorption), respectively. By examining the enzyme loading, activity, and kinetics under different immobilization mechanisms, we found that except for dextranase, enzyme immobilization via electrostatic attraction retained the most activity, whereas covalent bonding and hydrophobic adsorption were detrimental to enzyme conformation. Enzyme immobilization via covalent bonding ensured a high enzyme loading, and hydrophobic adsorption was only suitable for lipase and dextranase immobilization. Moreover, the properties of functional groups around the enzyme active center should be considered for the selection of suitable immobilization strategy (i.e., avoid covering the active center by membrane carrier). This work not only established a versatile platform for biocatalytic membrane preparation but also provided a novel methodology to evaluate the effect of immobilization mechanisms on enzyme performance.


Assuntos
Dextranase/metabolismo , Glucose Oxidase/metabolismo , Indóis/metabolismo , Lacase/metabolismo , Lipase/metabolismo , Pepsina A/metabolismo , Polímeros/metabolismo , Biocatálise , Dextranase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Lacase/química , Lipase/química , Pepsina A/química , Polímeros/química , Eletricidade Estática
12.
Mikrochim Acta ; 185(1): 52, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29594564

RESUMO

A film of perovskite-type LaFeO3 nanoparticles (NPs) was deposited on fluorine-doped tin oxide (FTO) conducting glass via dipping-lifting and calcination. Scanning electron microscopy shows that the NPs are evenly distributed on the surface of the glass. The modified glass was further coated with antibody against human interleukin 6 (IL-6) to result in a photoelectrochemical immunosensor for IL-6. The well-established photoelectrochemical immunoassay has a linear current response in the range of 0.1 pg·mL-1 to 0.1 µg·mL-1 and a detection limit as low as 33 fg·mL-1. Graphical abstract Schematic of a novel photoelectochemical immunoassay for the measurement of IL-6 based on perovskite-type LaFeO3 nanoparticles. The immunoassay had a higher sensitivity and may also be applied to other bioanalysis and environment monitoring.


Assuntos
Imunoensaio/métodos , Interleucina-6/análise , Anticorpos , Compostos de Cálcio , Técnicas Eletroquímicas , Flúor , Humanos , Imunoensaio/normas , Interleucina-6/imunologia , Limite de Detecção , Óxidos/química , Processos Fotoquímicos , Compostos de Estanho , Titânio
13.
Hum Reprod ; 31(4): 832-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26848187

RESUMO

STUDY QUESTION: Can cell survival of dissociated human embryonic stem cells (hESCs) be increased during culture? SUMMARY ANSWER: A protein kinase A (PKA) inhibitor, H89, can significantly enhance survival and clonogenicity of dissociated hESCs without affecting their pluripotency. WHAT IS KNOWN ALREADY: hESCs are vulnerable to massive cell death upon cellular detachment and dissociation. STUDY DESIGN, SIZE, DURATION: hESCs were dissociated into single cells and then cultured in feeder-dependent and -independent manners. H89 was added to the culture medium at different concentrations for 1 day. The statistical results were obtained from at least three independent experiments (n ≥ 4). The group without treatment was used as the negative control. PARTICIPANTS/MATERIALS, SETTING, METHODS: 4 µM H89 was added in the culture medium to promote cell survival and colony formation of dissociated hESCs. MTT method and propidium iodide (PI) staining were used to determine cell proliferation, cell death and cell cycle, respectively. To count colony formation, alkaline phosphatase (AP) staining was carried out. Western blot was performed to determine protein expression. Except AP staining, immunofluorescence, RT-PCR and karyotype analysis were used to confirm the pluripotent state of H89 treated hESCs. MAIN RESULTS AND THE ROLE OF CHANCE: H89 inhibits the dissociation-induced phosphorylation of PKA and two substrates of Rho-associated coiled-coil containing protein kinase (ROCK), myosin light chain (MLC2) and myosin phosphatase target subunit 1 (MYPT1), significantly increases cell survival and colony formation, and strongly depresses dissociation-induced cell death and cell blebbing without affecting the pluripotency of hESCs and their differentiation in vitro. LIMITATIONS, REASONS FOR CAUTION: Appropriate H89 concentration should be used and 1 day of H89 treatment is sufficient for promoting survival and colony formation of dissociated hESCs. WIDER IMPLICATIONS OF THE FINDINGS: These results provide an alternative for human pluripotent stem cell (hPSC) culture, broaden the scope of participants in the cell death of single hES cells after dissociation and further enlighten clues to understand the mechanism of dissociation-induced cell death. STUDY FUNDING/COMPETING INTERESTS: This research was supported by the National Natural Science Foundation of China (21176238, 21576266), and Chinese Academy of Sciences. There is no conflict of interest to declare. TRIAL REGISTRATION NUMBER: Nil.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Isoquinolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Animais , Miosinas Cardíacas/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Separação Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Cinética , Camundongos , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Piridinas/farmacologia , Quinases Associadas a rho/metabolismo
14.
Biochim Biophys Acta ; 1838(7): 1911-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24583082

RESUMO

Stabilization of cells in a desiccated state can significantly simplify the storage and transportation and save expenses for clinical applications. Introduction of the impermeable disaccharide, trehalose, into cells is an important step to improve the desiccation tolerance of cells. In this study, a novel cell penetrating peptide, KRKRWHW, was developed based on molecular simulations. The peptide exhibited little cytotoxicity and high penetrating efficiency into mammalian cells. The cell viability of mouse embryonic fibroblasts (MEFs) after the incubation with various concentrations of KRKRWHW from 0.01mM to 5mM at 37°C for 4h was maintained at around 100%. The peptide was able to penetrate into MEFs within 1h at 37°C with an efficiency of around 90% at 0.1mM. Trehalose, as a cargo coupled with the peptide of KRKRWHW through hydrogen bond and π-π bond, was successfully loaded into the MEFs. This novel peptide provides a novel approach for the delivery of trehalose into mammalian cells.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Trealose/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Ligação de Hidrogênio , Camundongos , Modelos Moleculares
15.
Cryobiology ; 71(3): 486-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26548334

RESUMO

Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding.


Assuntos
Criopreservação/métodos , Células-Tronco Embrionárias Humanas/citologia , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Humanos
16.
Mol Microbiol ; 87(1): 94-111, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136852

RESUMO

Burkholderia cenocepacia is an opportunistic human pathogen that encodes two LuxI-type acylhomoserine lactone (AHL) synthases and three LuxR-type AHL receptors. Of these, cepI and cepR form a cognate synthase/receptor pair, as do cciI and cciR, while cepR2 lacks a genetically linked AHL synthase gene. Another group showed that a cepR2 mutant overexpressed a cluster of linked genes that appear to direct the production of a secondary metabolite. We found that these same genes were upregulated by octanoylhomoserine lactone (OHL), which is synthesized by CepI. These data suggest that several cepR2-linked promoters are repressed by CepR2 and that CepR2 is antagonized by OHL. Fusions of two divergent promoters to lacZ were used to confirm these hypotheses, and promoter resections and DNase I footprinting assays revealed a single CepR2 binding site between the two promoters. This binding site lies well upstream of both promoters, suggesting an unusual mode of repression. Adjacent to the cepR2 gene is a gene that we designate cepS, which encodes an AraC-type transcription factor. CepS is essential for expression of both promoters, regardless of the CepR2 status or OHL concentration. CepS therefore acts downstream of CepR2, and CepR2 appears to function as a CepS antiactivator.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Fator de Transcrição AraC/genética , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Burkholderia cenocepacia/enzimologia , Burkholderia cenocepacia/metabolismo , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Percepção de Quorum , Proteínas Repressoras/genética , Análise de Sequência de DNA
17.
Arch Biochem Biophys ; 550-551: 67-76, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24780243

RESUMO

Due to the unlimited capacity of self-renew and ability to differentiate into derivatives of three germ layers, human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), have a great potential in regenerative medicine. A major challenge we are facing during the long-term storage of human pluripotent stem cells with the conventional slow cooling rate is the low cell recovery rate after cryopreservation which cannot meet the requirements for the future clinical applications. Evaluating the cell membrane permeability and the corresponding activation energy of hESCs and hiPSCs for water and different cryoprotective agents (CPA), including dimethyl sulfoxide (Me2SO), 1,2-propandiol and glycerol, is important for facilitating the development of cryopreservation protocol to enhance cell recovery after the cryopreservation. The osmotically inactive volume of hESCs and hiPSCs determined using the Boyle-van't Hoff model was 0.32V0 and 0.42V0, respectively. The membrane permeability was assessed from the volume changes of cells exposed to Me2SO, 1,2-propanediol and glycerol at the temperatures ranging from 8 to 30°C. These results showed the biophysical differences between hESCs and hiPSCs. Their activation energy for water and CPAs extrapolated from the Arrhenius relationship indicated that the water transport was probably not through the channel-mediated mechanism.


Assuntos
Crioprotetores/metabolismo , Dimetil Sulfóxido/metabolismo , Glicerol/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Propilenoglicol/metabolismo , Água/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Tamanho Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cinética , Especificidade de Órgãos , Concentração Osmolar , Temperatura , Termodinâmica
18.
Carbohydr Polym ; 335: 121920, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616070

RESUMO

Natural polymer-based hydrogels have been wildly used in electronic skin, health monitoring and human motion sensing. However, the construction of hydrogel with excellent mechanical strength and electrical conductivity totally using natural polymers still faces many challenges. In this paper, gelatin and oxidized sodium carboxymethylcellulose were used to synthesize a double-network hydrogel through the dynamic Schiff base bonds. Then, the mechanical strength of the hydrogel was further enhanced by immersing it in an ammonium sulfate solution based on the Hofmeister effect between gelatin and salt. Finally, the gelatin/oxidized sodium carboxymethylcellulose hydrogel exhibited high tensile properties (614 %), tensile fracture strength (2.6 MPa), excellent compressive fracture strength (64 MPa), and compressive toughness (4.28 MJ/m3). Also, the electrical conductivity reached 3.94 S/m. The hydrogel after salt soaked was fabricated as strain sensors, which could accurately monitor the movement of many joints in the human body, such as fingers, wrists, elbows, neck, and throat. Therefore, the designed hydrogel fully originated from natural polymers and has great application potential in motion detection and information recording.

19.
Adv Healthc Mater ; : e2400126, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768441

RESUMO

Blood-contact medical devices are indispensable for clinical interventions, yet their susceptibility to thrombosis and bacterial infections poses substantial risks to treatment efficacy and patient well-being. This study introduces a polysulfobetaine/alginate-CuII (SAC) zwitterionic hydrogel coating on polyurethane (PU) surfaces. This approach retains the superhydrophilic and antifouling nature of pSBMA while conferring the antibacterial effects of copper ions. Meanwhile, the copper alginate network intertwines with the polysulfobetaine (pSBMA) network, enhancing its mechanical properties and overcoming inherent weaknesses, thereby improving coating durability. Compared to the substrate, the SAC hydrogel coating significantly reduces thrombus adhesion mass by approximately 81.5% during extracorporeal blood circulation and effectively prevents bacterial biofilm formation even in a high-concentration bacterial milieu over 30 days. Moreover, the results from an isolated blood circulation model in New Zealand white rabbits affirm the impressive anticoagulant efficacy of the SAC hydrogel coating. The findings suggest that this hydrogel coating and its application method hold promise as a solution for blood-contact material surface modification to address thrombosis and bacterial biofilm formation simultaneously.

20.
Clin Nutr ; 43(2): 380-394, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150914

RESUMO

BACKGROUND & AIMS: 2'-Fucosyllactose (2'-FL), the primary constituent of human milk oligosaccharides, has been identified as a potential regulator of inflammation in inflammatory bowel disease. Despite this recognition, the specific mechanisms through which 2'-FL alleviates ulcerative colitis (UC) remain ambiguous. This study seeks to investigate the potential anti-inflammatory properties of 2'-FL concerning intestinal inflammation and uncover the associated mechanisms. METHODS: C57BL/6J mice were orally administered a daily dose of 500 mg/kg 2'-FL for 11 consecutive days, followed by the induction of colitis using 3 % (wt/vol) dextran sulfate sodium (DSS) for the final 6 days. Subsequently, a comprehensive range of techniques, including an Acyl-biotin exchange assay, fluorescein-isothiocyanate-labeled dextran assay, histopathology, ELISA, quantitative real-time PCR, Western blot, immunofluorescence staining, immunohistochemistry staining, Alcian blue-periodic acid schiff staining, TdT-mediated dUTP nick end labeling, transmission electron microscopy, iTRAQ quantitative proteomics, bioinformatics analysis, and the generation of signal transducer and activator of transcription 3 (STAT3) knockout mice, were employed to explore the relevant molecular mechanisms. RESULTS: Administration of 2'-FL significantly ameliorated DSS-induced colitis in mice and enhanced the integrity of the intestinal mucosal barrier. 2'-FL downregulated the phosphorylation of STAT3 and inhibited STAT3-related signaling pathways in colon tissues, which, in turn, reduced inflammatory responses. Interestingly, knockdown of STAT3 attenuated the protective effects of 2'-FL, highlighting that 2'-FL-mediated inflammatory attenuation is dependent on STAT3 expression. Additionally, 2'-FL could influence STAT3 activation by modulating the palmitoylation and depalmitoylation of STAT3. CONCLUSIONS: 2'-FL promotes the recovery of the intestinal mucosal barrier and suppresses inflammation in ulcerative colitis by inhibiting the palmitoylation and phosphorylation of STAT3.


Assuntos
Colite Ulcerativa , Colite , Trissacarídeos , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/metabolismo , Fator de Transcrição STAT3/metabolismo , Fosforilação , Lipoilação , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Inflamação/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA