Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Immunity ; 56(2): 289-306.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36750099

RESUMO

Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.


Assuntos
Sarcoidose , Transcriptoma , Animais , Camundongos , Humanos , Citocinas/metabolismo , Granuloma , Perfilação da Expressão Gênica
2.
Nat Immunol ; 18(3): 293-302, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092373

RESUMO

The aggregation of hypertrophic macrophages constitutes the basis of all granulomatous diseases, such as tuberculosis or sarcoidosis, and is decisive for disease pathogenesis. However, macrophage-intrinsic pathways driving granuloma initiation and maintenance remain elusive. We found that activation of the metabolic checkpoint kinase mTORC1 in macrophages by deletion of the gene encoding tuberous sclerosis 2 (Tsc2) was sufficient to induce hypertrophy and proliferation, resulting in excessive granuloma formation in vivo. TSC2-deficient macrophages formed mTORC1-dependent granulomatous structures in vitro and showed constitutive proliferation that was mediated by the neo-expression of cyclin-dependent kinase 4 (CDK4). Moreover, mTORC1 promoted metabolic reprogramming via CDK4 toward increased glycolysis while simultaneously inhibiting NF-κB signaling and apoptosis. Inhibition of mTORC1 induced apoptosis and completely resolved granulomas in myeloid TSC2-deficient mice. In human sarcoidosis patients, mTORC1 activation, macrophage proliferation and glycolysis were identified as hallmarks that correlated with clinical disease progression. Collectively, TSC2 maintains macrophage quiescence and prevents mTORC1-dependent granulomatous disease with clinical implications for sarcoidosis.


Assuntos
Granuloma/imunologia , Macrófagos/imunologia , Complexos Multiproteicos/metabolismo , Sarcoidose/imunologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Quinase 4 Dependente de Ciclina/metabolismo , Progressão da Doença , Granuloma/tratamento farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Sarcoidose/tratamento farmacológico , Transdução de Sinais , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
4.
Blood ; 141(23): 2878-2890, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37018657

RESUMO

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood. By assessing mice that harbor a macrophage-specific deletion of the tuberous sclerosis complex 2 (Tsc2), a negative regulator of mechanistic target of rapamycin complex 1 (mTORC1), we found that these mice possessed various defects in iron metabolism, including defective steady-state erythropoiesis and a reduced saturation of Tf with iron. This iron deficiency phenotype was associated with an iron import block from the duodenal epithelial cells into the circulation. Activation of mTORC1 in villous duodenal CD68+ macrophages induced serine protease expression and promoted local degradation of Tf, whereas the depletion of macrophages in mice increased Tf levels. Inhibition of mTORC1 with everolimus or serine protease activity with nafamostat restored Tf levels and Tf saturation in the Tsc2-deficient mice. Physiologically, Tf levels were regulated in the duodenum during the prandial process and Citrobacter rodentium infection. These data suggest that duodenal macrophages determine iron transfer to the circulation by controlling Tf availability in the lamina propria villi.


Assuntos
Ferro da Dieta , Transferrina , Camundongos , Animais , Transferrina/metabolismo , Ferro da Dieta/metabolismo , Ferro/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Dieta , Duodeno/metabolismo , Receptores da Transferrina/metabolismo
5.
Am J Respir Crit Care Med ; 209(9): 1152-1164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353578

RESUMO

Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.


Assuntos
Granuloma , Metabolismo dos Lipídeos , Macrófagos , Sarcoidose , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Sarcoidose/metabolismo , Granuloma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Modelos Animais de Doenças
6.
Trends Immunol ; 41(4): 286-299, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32122794

RESUMO

Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas: a compact collection of macrophages that have differentiated into epithelioid cells and which are associated with T helper (Th)1 and Th17 cells. Although no single causative factor has been shown to underlie sarcoidosis in humans, its etiology has been related to microbial, environmental, and genetic factors. We examine how these factors play a role in sarcoidosis pathogenesis. Specifically, we propose that dysfunction of mTOR, Rac1, and autophagy-related pathways not only hampers pathogen or nonorganic particle clearance but also participates in T cell and macrophage dysfunction, driving granuloma formation. This concept opens new avenues for potentially treating sarcoidosis and may serve as a blueprint for other granulomatous disorders.


Assuntos
Autofagia , Sarcoidose , Serina-Treonina Quinases TOR , Proteínas rac1 de Ligação ao GTP , Autofagia/genética , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Sarcoidose/genética , Sarcoidose/imunologia , Serina-Treonina Quinases TOR/imunologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia
7.
Am J Respir Crit Care Med ; 206(9): 1140-1152, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35767663

RESUMO

Rationale: Sarcoidosis is a multisystemic inflammatory disease characterized by the formation of granulomas in response to persistent stimuli. The long pentraxin PTX3 (pentraxin 3) has emerged as a component of humoral innate immunity with essential functions in the resolution of inflammation, but its role during granuloma formation is unknown. Objectives: To evaluate PTX3 as a modulator of pathogenic signals involved in granuloma formation and inflammation in sarcoidosis. Methods: Peripheral blood mononuclear cells obtained from patients with sarcoidosis harboring loss-of-function genetic variants and gene-deleted mice were used to assess the role of PTX3 in experimental models of granuloma formation in vitro and in vivo. The identified mechanisms of granulomatous inflammation were further evaluated in tissue and BAL samples and correlated with the disease course. Measurements and Main Results: We have identified a molecular link between PTX3 deficiency and the pathogenic amplification of complement activation to promote granuloma formation. Mechanistically, PTX3 deficiency licensed the complement component C5a-mediated activation of the metabolic checkpoint kinase mTORC1 (mammalian target of rapamycin complex 1) and the reprogramming of macrophages toward increased glycolysis to foster their proliferation and aggregation. This process sustained the further recruitment of granuloma-promoting immune cells and the associated proinflammatory microenvironment and influenced the clinical course of the disease. Conclusions: Our results identify PTX3 as a pivotal molecule that regulates complement-mediated signaling cues in macrophages to restrain granulomatous inflammation and highlight the therapeutic potential of this signaling axis in targeting granuloma formation in sarcoidosis.


Assuntos
Proteína C-Reativa , Ativação de Macrófagos , Sarcoidose , Componente Amiloide P Sérico , Animais , Camundongos , Proteína C-Reativa/metabolismo , Proteínas do Sistema Complemento , Granuloma , Inflamação , Leucócitos Mononucleares/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Humanos
8.
Eur J Immunol ; 51(12): 3161-3175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648202

RESUMO

Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.


Assuntos
Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos , Proteínas de Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo
9.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242699

RESUMO

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Ácido Ursodesoxicólico/análogos & derivados , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/fisiopatologia , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
10.
Int Immunol ; 32(7): 455-465, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32140726

RESUMO

The intestinal epithelium is one of the most quickly dividing tissues in our body, combining the absorptive advantages of a single layer with the protection of a constantly renewing barrier. It is continuously exposed to nutrients and commensal bacteria as well as microbial and host-derived metabolites, but also to hazards such as pathogenic bacteria and toxins. These environmental cues are sensed by the mucosa and a vast repertory of immune cells, especially macrophages. A disruption of intestinal homeostasis in terms of barrier interruption can lead to inflammatory bowel diseases and colorectal cancer, and macrophages have an important role in restoring epithelial function following injury. The mammalian/mechanistic target of rapamycin (mTOR) signalling pathway senses environmental cues and integrates metabolic responses. It has emerged as an important regulator of intestinal functions in homeostasis and disease. In this review, we are going to discuss intestinal mTOR signalling and metabolic regulation in different intestinal cell populations with a special focus on immune cells and their actions on intestinal function.


Assuntos
Intestinos/imunologia , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Intestinos/citologia , Transdução de Sinais/imunologia
11.
Trends Immunol ; 37(11): 778-789, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27614799

RESUMO

Dendritic cells (DCs) are essential antigen-presenting cells that sample the extra- and intracellular milieu to process antigens for the instruction of T cell responses. The mammalian target of rapamycin (mTOR) network senses environmental cues and is important for numerous cellular processes. This review discusses how DCs use mTOR complexes (mTORC1 and 2) to adapt their cellular metabolism, transcriptional responses, and translation machinery to control DC development, antigen processing, cytokine production, and T cell stimulation. We present a spatiotemporal model suggesting that the mTOR network integrates pattern recognition and growth factor receptor activation with nutritional information from the cell and surrounding tissue to support T cell stimulation and tolerance. mTOR develops into a central player that regulates DC differentiation and immune functions.


Assuntos
Células Dendríticas/imunologia , Complexos Multiproteicos/metabolismo , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Apresentação de Antígeno , Diferenciação Celular , Citocinas/metabolismo , Humanos , Tolerância Imunológica , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Modelos Imunológicos , Receptor Cross-Talk , Receptores de Reconhecimento de Padrão/metabolismo
12.
Immunity ; 32(6): 727-9, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620936

RESUMO

In this issue of Immunity, Lee et al. (2010) demonstrate that the mammalian Target of Rapamycin Complex 2 promotes the differentiation of T helper 1 (Th1) cells via the kinase Akt, whereas it independently fosters Th2 cell generation via another kinase, PKC-theta.

13.
J Immunol ; 198(6): 2414-2425, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28179495

RESUMO

Peroxisomes are proposed to play an important role in the regulation of systemic inflammation; however, the functional role of these organelles in inflammatory responses of myeloid immune cells is largely unknown. In this article, we demonstrate that the nonclassical peroxisome proliferator 4-phenyl butyric acid is an efficient inducer of peroxisomes in various models of murine macrophages, such as primary alveolar and peritoneal macrophages and the macrophage cell line RAW264.7, but not in primary bone marrow-derived macrophages. Further, proliferation of peroxisomes blocked the TLR4 ligand LPS-induced proinflammatory response, as detected by the reduced induction of the proinflammatory protein cyclooxygenase (COX)-2 and the proinflammatory cytokines TNF-α, IL-6, and IL-12. In contrast, disturbing peroxisome function by knockdown of peroxisomal gene Pex14 or Mfp2 markedly increased the LPS-dependent upregulation of the proinflammatory proteins COX-2 and TNF-α. Specifically, induction of peroxisomes did not affect the upregulation of COX-2 at the mRNA level, but it reduced the half-life of COX-2 protein, which was restored by COX-2 enzyme inhibitors but not by proteasomal and lysosomal inhibitors. Liquid chromatography-tandem mass spectrometry analysis revealed that various anti-inflammatory lipid mediators (e.g., docosahexaenoic acid) were increased in the conditioned medium from peroxisome-induced macrophages, which blocked LPS-induced COX-2 upregulation in naive RAW264.7 cells and human primary peripheral blood-derived macrophages. Importantly, LPS itself induced peroxisomes that correlated with the regulation of COX-2 during the late phase of LPS activation in macrophages. In conclusion, our findings identify a previously unidentified role for peroxisomes in macrophage inflammatory responses and suggest that peroxisomes are involved in the physiological cessation of macrophage activation.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Peroxissomos/imunologia , Fenilbutiratos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Multifuncional do Peroxissomo-2/genética , Cultura Primária de Células , Células RAW 264.7 , Proteínas Repressoras/genética
14.
Gerontology ; 64(2): 127-134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29190625

RESUMO

The mechanistic target of rapamycin (mTOR) network is an evolutionary conserved signaling hub that senses and integrates environmental and intracellular nutrient and growth factor signals to coordinate basic cellular and organismal responses such as cell growth, proliferation, apoptosis, and inflammation depending on the individual cell and tissue. A growing list of evidence suggests that mTOR signaling influences longevity and aging. Inhibition of the mTOR complex 1 (mTORC1) with rapamycin is currently the only known pharmacological treatment that increases lifespan in all model organisms studied. This review discusses the potential mechanisms how mTOR signaling controls lifespan and influences aging-related processes such as cellular senescence, metabolism, and stem cell function. Understanding these processes might provide novel therapeutic approaches to influence longevity and aging-related diseases.


Assuntos
Serina-Treonina Quinases TOR/fisiologia , Envelhecimento/fisiologia , Animais , Autofagia/fisiologia , Restrição Calórica , Senescência Celular/fisiologia , Humanos , Longevidade/fisiologia , Mitocôndrias/fisiologia , Transdução de Sinais , Células-Tronco/imunologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
15.
J Am Soc Nephrol ; 28(3): 769-775, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27612996

RESUMO

The cardioprotective effect of HDL is thought to be largely determined by its cholesterol efflux capacity, which was shown to inversely correlate with atherosclerotic cardiovascular disease in populations with normal kidney function. Patients with ESRD suffer an exceptionally high cardiovascular risk not fully explained by traditional risk factors. Here, in a post hoc analysis in 1147 patients with type 2 diabetes mellitus on hemodialysis who participated in the German Diabetes Dialysis Study (4D Study), we investigated whether the HDL cholesterol efflux capacity is predictive for cardiovascular risk. Efflux capacity was quantified by incubating human macrophage foam cells with apoB-depleted serum. During a median follow-up of 4.1 years, 423 patients reached the combined primary end point (composite of cardiac death, nonfatal myocardial infarction, and stroke), 410 patients experienced cardiac events, and 561 patients died. Notably, in Cox regression analyses, we found no association of efflux capacity with the combined primary end point (hazard ratio [HR], 0.96; 95% confidence interval [95% CI], 0.88 to 1.06; P=0.42), cardiac events (HR, 0.92; 95% CI, 0.83 to 1.02; P=0.11), or all-cause mortality (HR, 0.96; 95% CI, 0.88 to 1.05; P=0.39). In conclusion, HDL cholesterol efflux capacity is not a prognostic cardiovascular risk marker in this cohort of patients with diabetes on hemodialysis.


Assuntos
Doenças Cardiovasculares/epidemiologia , HDL-Colesterol/metabolismo , Diálise Renal , Idoso , Feminino , Humanos , Masculino , Prognóstico , Medição de Risco
16.
Immunity ; 29(4): 565-77, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18848473

RESUMO

The innate inflammatory immune response must be tightly controlled to avoid damage to the host. Here, we showed that the tuberous sclerosis complex-mammalian target of rapamycin (TSC-mTOR) pathway regulated inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells. Inhibition of mTOR by rapamycin promoted production of proinflammatory cytokines via the transcription factor NF-kappaB but blocked the release of interleukin-10 via the transcription factor STAT3. Conversely, deletion of TSC2, the key negative regulator of mTOR, diminished NF-kappaB but enhanced STAT3 activity and reversed this proinflammatory cytokine shift. Rapamycin-hyperactivated monocytes displayed a strong T helper 1 (Th1) cell- and Th17 cell-polarizing potency. Inhibition of mTOR in vivo regulated the inflammatory response and protected genetically susceptible mice against lethal Listeria monocytogenes infection. These data identify the TSC2-mTOR pathway as a key regulator of innate immune homeostasis with broad clinical implications for infectious and autoimmune diseases, vaccination, cancer, and transplantation.


Assuntos
Citocinas/imunologia , Imunidade Inata , Listeriose/imunologia , Monócitos/imunologia , Proteínas Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antibacterianos/farmacologia , Citocinas/biossíntese , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Listeriose/microbiologia , Listeriose/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Células Th1/imunologia , Células Th1/metabolismo , Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
17.
BMC Immunol ; 17(1): 11, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206492

RESUMO

BACKGROUND: Immunologists often measure several correlated immunological markers, such as concentrations of different cytokines produced by different immune cells and/or measured under different conditions, to draw insights from complex immunological mechanisms. Although there have been recent methodological efforts to improve the statistical analysis of immunological data, a framework is still needed for the simultaneous analysis of multiple, often correlated, immune markers. This framework would allow the immunologists' hypotheses about the underlying biological mechanisms to be integrated. RESULTS: We present an analytical approach for statistical analysis of correlated immune markers, such as those commonly collected in modern immuno-epidemiological studies. We demonstrate i) how to deal with interdependencies among multiple measurements of the same immune marker, ii) how to analyse association patterns among different markers, iii) how to aggregate different measures and/or markers to immunological summary scores, iv) how to model the inter-relationships among these scores, and v) how to use these scores in epidemiological association analyses. We illustrate the application of our approach to multiple cytokine measurements from 818 children enrolled in a large immuno-epidemiological study (SCAALA Salvador), which aimed to quantify the major immunological mechanisms underlying atopic diseases or asthma. We demonstrate how to aggregate systematically the information captured in multiple cytokine measurements to immunological summary scores aimed at reflecting the presumed underlying immunological mechanisms (Th1/Th2 balance and immune regulatory network). We show how these aggregated immune scores can be used as predictors in regression models with outcomes of immunological studies (e.g. specific IgE) and compare the results to those obtained by a traditional multivariate regression approach. CONCLUSION: The proposed analytical approach may be especially useful to quantify complex immune responses in immuno-epidemiological studies, where investigators examine the relationship among epidemiological patterns, immune response, and disease outcomes.


Assuntos
Alergia e Imunologia , Asma/diagnóstico , Epidemiologia , Hipersensibilidade Imediata/diagnóstico , Biomarcadores/metabolismo , Pesquisa Biomédica , Brasil/epidemiologia , Criança , Simulação por Computador , Citocinas/metabolismo , Interpretação Estatística de Dados , Humanos , Imunoglobulina E/sangue , Sistemas Integrados e Avançados de Gestão da Informação , Avaliação de Resultados em Cuidados de Saúde/métodos , Valor Preditivo dos Testes , Prognóstico , Equilíbrio Th1-Th2
18.
J Am Soc Nephrol ; 26(3): 565-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25071090

RESUMO

Cardiovascular disease remains the leading cause of death in renal transplant recipients, but the underlying causative mechanisms for this important problem remain elusive. Recent work has indicated that qualitative alterations of HDL affect its functional and compositional properties in ESRD. Here, we systematically analyzed HDL from stable renal transplant recipients, according to graft function, and from patients with ESRD to determine whether structural and functional properties of HDL remain dysfunctional after renal transplantation. Cholesterol acceptor capacity and antioxidative activity, representing two key cardioprotective mechanisms of HDL, were profoundly suppressed in kidney transplant recipients independent of graft function and were comparable with levels in patients with ESRD. Using a mass spectroscopy approach, we identified specific remodeling of transplant HDL with highly enriched proteins, including α-1 microglobulin/bikunin precursor, pigment epithelium-derived factor, surfactant protein B, and serum amyloid A. In conclusion, this study demonstrates that HDL from kidney recipients is uniquely altered at the molecular and functional levels, indicating a direct pathologic role of HDL that could contribute to the substantial cardiovascular risk in the transplant population.


Assuntos
HDL-Colesterol/química , Falência Renal Crônica/sangue , Transplante de Rim , Uremia/sangue , Adulto , Estudos de Casos e Controles , HDL-Colesterol/sangue , Feminino , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
19.
Biochim Biophys Acta ; 1841(7): 944-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24713582

RESUMO

The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Óxido Nítrico/antagonistas & inibidores , RNA Mensageiro/genética , Receptores Depuradores Classe B/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , HDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/antagonistas & inibidores , Receptores Depuradores Classe B/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
20.
J Immunol ; 190(4): 1519-27, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23315073

RESUMO

The MAPK p38α senses environmental stressors and orchestrates inflammatory and immunomodulatory reactions. However, the molecular mechanism how p38α controls immunomodulatory responses in myeloid cells remains elusive. We found that in monocytes and macrophages, p38α activated the mechanistic target of rapamycin (mTOR) pathway in vitro and in vivo. p38α signaling in myeloid immune cells promoted IL-10 but inhibited IL-12 expression via mTOR and blocked the differentiation of proinflammatory CD4(+) Th1 cells. Cellular stress induced p38α-mediated mTOR activation that was independent of PI3K but dependent on the MAPK-activated protein kinase 2 and on the inhibition of tuberous sclerosis 1 and 2, a negative regulatory complex of mTOR signaling. Remarkably, p38α and PI3K concurrently modulated mTOR to balance IL-12 and IL-10 expression. Our data link p38α to mTOR signaling in myeloid immune cells that is decisive for tuning the immune response in dependence on the environmental milieu.


Assuntos
Exposição Ambiental , Imunidade Inata , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Linhagem Celular Transformada , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Exposição Ambiental/efeitos adversos , Humanos , Imunidade Inata/genética , Interleucina-10/biossíntese , Subunidade p40 da Interleucina-12/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/genética , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA