Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Rev Mol Cell Biol ; 18(2): 127-136, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27999438

RESUMO

In the early 2000s, receptor-interacting serine/threonine protein kinase 1 (RIPK1), a molecule already recognized as an important regulator of cell survival, inflammation and disease, was attributed an additional function: the regulation of a novel cell death pathway that came to be known as necroptosis. Subsequently, the related kinase RIPK3 and its substrate mixed-lineage kinase domain-like protein (MLKL) were also implicated in the necroptotic pathway, and links between this pathway and apoptosis were established. In this Timeline article, we outline the discoveries that have helped to identify the roles of RIPK1, RIPK3, MLKL and other regulators of necroptosis, and how they interact to determine cell fate.


Assuntos
Apoptose/fisiologia , Inflamação/patologia , Necrose/patologia , Animais , Caspase 8/metabolismo , Morte Celular , Modelos Animais de Doenças , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Necrose/fisiopatologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Cell ; 157(5): 1189-202, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813850

RESUMO

Receptor-interacting protein kinase (RIPK)-1 is involved in RIPK3-dependent and -independent signaling pathways leading to cell death and/or inflammation. Genetic ablation of ripk1 causes postnatal lethality, which was not prevented by deletion of ripk3, caspase-8, or fadd. However, animals that lack RIPK1, RIPK3, and either caspase-8 or FADD survived weaning and matured normally. RIPK1 functions in vitro to limit caspase-8-dependent, TNFR-induced apoptosis, and animals lacking RIPK1, RIPK3, and TNFR1 survive to adulthood. The role of RIPK3 in promoting lethality in ripk1(-/-) mice suggests that RIPK3 activation is inhibited by RIPK1 postbirth. Whereas TNFR-induced RIPK3-dependent necroptosis requires RIPK1, cells lacking RIPK1 were sensitized to necroptosis triggered by poly I:C or interferons. Disruption of TLR (TRIF) or type I interferon (IFNAR) signaling delayed lethality in ripk1(-/-)tnfr1(-/-) mice. These results clarify the complex roles for RIPK1 in postnatal life and provide insights into the regulation of FADD-caspase-8 and RIPK3-MLKL signaling by RIPK1.


Assuntos
Caspase 8/metabolismo , Genes Letais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Caspase 8/genética , Morte Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo
3.
Gut ; 72(10): 1927-1941, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230755

RESUMO

OBJECTIVE: To better understand the immune microenvironment of pancreatic ductal adenocarcinomas (PDACs), here we explored the relevance of T and B cell compartmentalisation into tertiary lymphoid structures (TLSs) for the generation of local antitumour immunity. DESIGN: We characterised the functional states and spatial organisation of PDAC-infiltrating T and B cells using single-cell RNA sequencing (scRNA-seq), flow cytometry, multicolour immunofluorescence, gene expression profiling of microdissected TLSs, as well as in vitro assays. In addition, we performed a pan-cancer analysis of tumour-infiltrating T cells using scRNA-seq and sc T cell receptor sequencing datasets from eight cancer types. To evaluate the clinical relevance of our findings, we used PDAC bulk RNA-seq data from The Cancer Genome Atlas and the PRINCE chemoimmunotherapy trial. RESULTS: We found that a subset of PDACs harbours fully developed TLSs where B cells proliferate and differentiate into plasma cells. These mature TLSs also support T cell activity and are enriched with tumour-reactive T cells. Importantly, we showed that chronically activated, tumour-reactive T cells exposed to fibroblast-derived TGF-ß may act as TLS organisers by producing the B cell chemoattractant CXCL13. Identification of highly similar subsets of clonally expanded CXCL13 + tumour-infiltrating T cells across multiple cancer types further indicated a conserved link between tumour-antigen recognition and the allocation of B cells within sheltered hubs in the tumour microenvironment. Finally, we showed that the expression of a gene signature reflecting mature TLSs was enriched in pretreatment biopsies from PDAC patients with longer survival after receiving different chemoimmunotherapy regimens. CONCLUSION: We provided a framework for understanding the biological role of PDAC-associated TLSs and revealed their potential to guide the selection of patients for future immunotherapy trials.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Estruturas Linfoides Terciárias , Humanos , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Imunidade , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Immunity ; 41(6): 947-59, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25500368

RESUMO

Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Granulócitos/fisiologia , Monócitos/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células Mieloides/fisiologia , Neoplasias Experimentais/imunologia , Animais , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/genética , Caspase 8/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Técnicas de Cocultura , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/genética
5.
Mol Cell ; 56(4): 469-80, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25459879

RESUMO

Receptor Interacting Protein Kinase-1 (RIPK1), a key player in inflammation and cell death, assumes opposite functions depending on the cellular context and its posttranslational modifications. Genetic evidence supported by biochemical and cellular biology approaches sheds light on the circumstances in which RIPK1 promotes or inhibits these processes.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Apoptose , Humanos , Inflamação/enzimologia , Transdução de Sinais , Ubiquitinação
6.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303545

RESUMO

Respiratory syncytial virus (RSV) is the major cause of acute bronchiolitis in infants under 2 years old. Necroptosis has been implicated in the outcomes of respiratory virus infections. We report that RSV infection triggers necroptosis in primary mouse macrophages and human monocytes in a RIPK1-, RIPK3- and MLKL-dependent manner. Moreover, necroptosis pathways are harmful to RSV clearance from alveolar macrophages. Additionally, Ripk3-/- mice were protected from RSV-induced weight loss and presented with reduced viral loads in the lungs.Alveolar macrophage depletion also protected mice from weight loss and decreased lung RSV virus load. Importantly, alveolar macrophage depletion abolished the upregulation of Ripk3 and Mlkl gene expression induced by RSV infection in the lung tissue.Autocrine tumor necrosis factor (TNF)-mediated RSV-triggered macrophage necroptosis and necroptosis pathways were also involved in TNF secretion even when macrophages were committed to cell death, which can worsen lung injury during RSV infection. In line, Tnfr1-/- mice had a marked decrease in Ripk3 and Mlkl gene expression and a sharp reduction in the numbers of necrotic alveolar macrophages in the lungs. Finally, we provide evidence that elevated nasal levels of TNF are associated with disease severity in infants with RSV bronchiolitis.We propose that targeting TNF and/or the necroptotic machinery may be valuable therapeutic approaches to reduce the respiratory morbidity caused by RSV infection in young children.


Assuntos
Bronquiolite , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Macrófagos Alveolares , Camundongos , Necroptose
7.
Adv Exp Med Biol ; 1301: 123-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370290

RESUMO

The past decades witnessed the discovery of novel modes of cell death, such as ferroptosis, pyroptosis and necroptosis, all of them presenting common necrotic traits. In this chapter, we revisit the early discoveries that unveiled necroptosis as a distinct cell death mechanism. We describe necroptosis, its main regulators and their role in maintaining cellular homeostasis and in the disease state. We conclude by discussing its phenotypic similarities with ferroptosis and the possible crosstalk between these pathways.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Apoptose , Caspases/genética , Morte Celular , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
8.
J Neurooncol ; 147(3): 587-594, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32222932

RESUMO

PURPOSE: Necroptosis is a necrotic-like cell death pathway in which Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) plays a central role and may induce inflammation and immunity. Lower RIPK3 levels have been correlated with a poor prognosis in breast and colorectal cancer patients. Instead, in gliomas, the most prevalent among central nervous system cancers, necrosis concurs with a more aggressive and lethal outcome, suggesting that, in these cases, necrotic-like pathways may be linked to worse prognoses. Lower-grade gliomas (LGG) exhibit highly diverse clinical behaviors, ranging from slow-paced growth to fast progression to glioblastoma yet patient outcomes cannot be fully predicted through the available markers. To date, IDH mutational status is the most broadly used prognostic marker, albeit several candidates have been proposed to refine LGG subgrouping. Here, we aimed to assess RIPK3 role as a prognostic marker for LGG patients, independently of or in combination with IDH. METHODS: Using publicly available discovery (513 patients) and validation (134 patients) cohorts, we performed Kaplan Meier survival analysis and uni- and multivariate Cox regression models. RESULTS: RIPK3 is an independent prognostic marker in LGG patients, even when controlled by age and molecular or histological diagnostic criteria. Contrary to what was previously reported for other cancers, high RIPK3 expression levels correlates with an increased risk of death. Importantly, RIPK3 expression levels further split both the mutant and wild-type IDH patients into distinct risk groups. CONCLUSION: RIPK3 expression levels can be used in combination with IDH mutational status to better subgroup LGG patients regarding overall survival.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/diagnóstico , Glioma/genética , Isocitrato Desidrogenase/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Adulto , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
9.
Nature ; 506(7489): 451-5, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24553141

RESUMO

Members of the nuclear factor-κB (NF-κB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-κB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-κB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-κB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-κB target genes, and rapidly transformed neural stem cells--the cell of origin of ependymoma--to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.


Assuntos
Transformação Celular Neoplásica , Ependimoma/genética , Ependimoma/metabolismo , NF-kappa B/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 11/genética , Ependimoma/patologia , Feminino , Humanos , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , NF-kappa B/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição , Translocação Genética/genética , Proteínas de Sinalização YAP
10.
Mol Cell ; 44(1): 9-16, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21981915

RESUMO

Caspase-8, FADD, and FLIP orchestrate apoptosis in response to death receptor ligation. Mysteriously however, these proteins are also required for normal embryonic development and immune cell proliferation, an observation that has led to their implication in several nonapoptotic processes. While many scenarios have been proposed, recent genetic and biochemical evidence points to unregulated signaling by the receptor-interacting protein kinases-1 (RIPK1) and RIPK3 as the lethal defect in caspase-8-, FADD-, and FLIP-deficient animals and tissues. The RIPKs are known killers, being responsible for a nonapoptotic form of cell death with features similar to necrosis. However, the mechanism by which caspase-8, FADD, and FLIP prevent runaway RIPK activation is unknown, and the signals that trigger these events during development and immune cell activation remain at large. In this review, we will lay out the evidence as it now stands, reinterpreting earlier observations in light of new clues and considering where the investigation might lead.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Regulação Enzimológica da Expressão Gênica , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Humanos , Camundongos , Camundongos Knockout
11.
Nature ; 471(7338): 363-7, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21368763

RESUMO

Caspase-8 has two opposing biological functions--it promotes cell death by triggering the extrinsic pathway of apoptosis, but also has a survival activity, as it is required for embryonic development, T-lymphocyte activation, and resistance to necrosis induced by tumour necrosis factor-α (TNF-α) and related family ligands. Here we show that development of caspase-8-deficient mice is completely rescued by ablation of receptor interacting protein kinase-3 (RIPK3). Adult animals lacking both caspase-8 and RIPK3 display a progressive lymphoaccumulative disease resembling that seen with defects in CD95 or CD95-ligand (also known as FAS and FASLG, respectively), and resist the lethal effects of CD95 ligation in vivo. We have found that caspase-8 prevents RIPK3-dependent necrosis without inducing apoptosis by functioning in a proteolytically active complex with FLICE-like inhibitory protein long (FLIP(L), also known as CFLAR), and this complex is required for the protective function.


Assuntos
Biocatálise , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Caspase 8/genética , Inibidores de Caspase , Linhagem Celular , Feminino , Masculino , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fenótipo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Serpinas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Virais/farmacologia , Receptor fas/deficiência , Receptor fas/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(47): 16836-41, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385600

RESUMO

Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.


Assuntos
Apoptose , Túbulos Renais/citologia , Animais , Peso Corporal , Caspase 8/genética , Caspase 8/fisiologia , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/fisiologia , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Traumatismo por Reperfusão/prevenção & controle
13.
J Immunol ; 192(4): 1835-46, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24453255

RESUMO

The Nlrp3 inflammasome is critical for host immunity, but the mechanisms controlling its activation are enigmatic. In this study, we show that loss of FADD or caspase-8 in a RIP3-deficient background, but not RIP3 deficiency alone, hampered transcriptional priming and posttranslational activation of the canonical and noncanonical Nlrp3 inflammasome. Deletion of caspase-8 in the presence or absence of RIP3 inhibited caspase-1 and caspase-11 activation by Nlrp3 stimuli but not the Nlrc4 inflammasome. In addition, FADD deletion prevented caspase-8 maturation, positioning FADD upstream of caspase-8. Consequently, FADD- and caspase-8-deficient mice had impaired IL-1ß production when challenged with LPS or infected with the enteropathogen Citrobacter rodentium. Thus, our results reveal FADD and caspase-8 as apical mediators of canonical and noncanonical Nlrp3 inflammasome priming and activation.


Assuntos
Proteínas de Transporte/imunologia , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Inflamassomos/imunologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Caspase 8/genética , Caspase 8/imunologia , Caspases/metabolismo , Caspases Iniciadoras , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 110(29): 12024-9, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818611

RESUMO

Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia-reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.


Assuntos
Apoptose/fisiologia , Ciclofilinas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Necrose/fisiopatologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Traumatismo por Reperfusão/complicações , Animais , Linhagem Celular , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Primers do DNA/genética , Genótipo , Estimativa de Kaplan-Meier , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poro de Transição de Permeabilidade Mitocondrial , Necrose/etiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
15.
J Virol ; 88(1): 503-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173220

RESUMO

Enhancement of cell death is a distinguishing feature of H1N1 influenza virus A/Puerto Rico/8/34 protein PB1-F2. Comparing the sequences (amino acids [aa] 61 to 87 using PB1-F2 amino acid numbering) of the PB1-F2-derived C-terminal peptides from influenza A viruses inducing high or low levels of cell death, we identified a unique I68, L69, and V70 motif in A/Puerto Rico/8/34 PB1-F2 responsible for promotion of the peptide's cytotoxicity and permeabilization of the mitochondrial membrane. When administered to mice, a 27-mer PB1-F2-derived C-terminal peptide with this amino acid motif caused significantly greater weight loss and pulmonary inflammation than the peptide without it (due to I68T, L69Q, and V70G mutations). Similar to the wild-type peptide, A/Puerto Rico/8/34 elicited significantly higher levels of macrophages, neutrophils, and cytokines in the bronchoalveolar lavage fluid of mice than its mutant counterpart 7 days after infection. Additionally, infection of mice with A/Puerto Rico/8/34 significantly enhanced the levels of morphologically transformed epithelial and immune mononuclear cells recruited in the airways compared with the mutant virus. In the mouse bacterial superinfection model, both peptide and virus with the I68, L69, and V70 sequence accelerated development of pneumococcal pneumonia, as reflected by increased levels of viral and bacterial lung titers and by greater mortality. Here we provide evidence suggesting that the newly identified cytotoxic sequence I68, L69, and V70 of A/Puerto Rico/8/34 PB1-F2 contributes to the pathogenesis of both primary viral and secondary bacterial infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/imunologia , Pneumonia Bacteriana/complicações , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Animais , Líquido da Lavagem Broncoalveolar , Cães , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Homologia de Sequência de Aminoácidos , Proteínas Virais/química
16.
Cell Rep ; 43(6): 114335, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850531

RESUMO

Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.


Assuntos
Caspase 8 , Proteína de Domínio de Morte Associada a Fas , Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Caspase 8/metabolismo , Proteínas Quinases/metabolismo , Apoptose , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Necroptose , Ligação Proteica , Camundongos Endogâmicos C57BL
17.
PLoS One ; 18(8): e0291019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651429

RESUMO

INTRODUCTION: Recently, the search for novel molecular markers in adult-type diffuse gliomas has grown substantially, yet with few novel breakthroughs. As the presence of a necrotic center is a differential diagnosis for more aggressive entities, we hypothesized that genes involved in necroptosis may play a role in tumor progression. AIM: Given that MLKL is the executioner of the necroptotic pathway, we evaluated whether this gene would help to predict prognosis of adult gliomas patients. METHODS: We analyzed a publicly available retrospective cohort (n = 530) with Kaplan Meier survival analysis (p<0.0001) and both uni- and multivariate Cox regression models. RESULTS: We determined that MLKL is an independent predictive prognostic marker for overall survival in these patients (HR: 2.56, p<0.001), even when controlled by the CNS5 gold-standard markers, namely IDH mutation and 1p/19q Codeletion (HR: 1.68, p = 0.013). These findings were confirmed in a validation cohort (n = 325), using the same cutoff value. Interestingly, higher expression of MLKL is associated with worse clinical outcome for adult-type diffuse glioma patients, which is opposite to what was found in other cell cancer types, suggesting that necroptosis undertakes an atypical detrimental role in glioma progression.


Assuntos
Genes Reguladores , Glioma , Humanos , Adulto , Estudos Retrospectivos , Fatores de Transcrição , Glioma/genética , Agressão , Proteínas Quinases
18.
Expert Opin Biol Ther ; 23(4): 353-364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36920351

RESUMO

INTRODUCTION: Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED: Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION: Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.


Assuntos
Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Vetores Genéticos , Terapia Genética/métodos , Lisossomos
19.
Mol Med ; 18: 577-86, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22371307

RESUMO

Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.


Assuntos
Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Choque/genética , Choque/patologia , Fator de Necrose Tumoral alfa/toxicidade , Animais , Apoptose/efeitos dos fármacos , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular Tumoral , Feminino , Produtos do Gene tat/genética , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Necrose , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Proteínas Recombinantes de Fusão/farmacologia , Serpinas/genética , Choque/induzido quimicamente , Choque/mortalidade , Proteínas Virais/genética
20.
Arterioscler Thromb Vasc Biol ; 31(6): 1360-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21454809

RESUMO

OBJECTIVE: Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. METHODS AND RESULTS: The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 µmol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1α (HIF-1α) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1α target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1α expression. Short hairpin RNA-mediated knockdown of HIF-1α attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. CONCLUSION: Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1α.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Ácidos Linoleicos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Nitrocompostos/farmacologia , Ácidos Oleicos/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Transportador de Glucose Tipo 1/genética , Humanos , Masculino , Óxido Nítrico/fisiologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA