RESUMO
Regulation of cell cycle progression is essential for cell proliferation during regeneration following injury. After appendage amputation, the axolotl (Ambystoma mexicanum) regenerates missing structures through an accumulation of proliferating cells known as the blastema. To study cell division during blastema growth, we generated a transgenic line of axolotls that ubiquitously expresses a bicistronic version of the fluorescent ubiquitination-based cell-cycle indicator (FUCCI). We demonstrate near-ubiquitous FUCCI expression in developing and adult tissues, and validate these expression patterns with DNA synthesis and mitosis phase markers. We demonstrate the utility of FUCCI for live and whole-mount imaging, showing the predominantly local contribution of cells during limb and tail regeneration. We also show that spinal cord amputation results in increased proliferation at least 5â mm from the site of injury. Finally, we use multimodal staining to provide cell type information for cycling cells by combining fluorescence in situ hybridization, EdU click-chemistry and immunohistochemistry on a single FUCCI tissue section. This new line of animals will be useful for studying cell cycle dynamics using in situ endpoint assays and in vivo imaging in developing and regenerating animals.
Assuntos
Ambystoma mexicanum , Mitose , Animais , Ciclo Celular , Extremidades/fisiologia , Hibridização in Situ Fluorescente , UbiquitinaçãoRESUMO
Some organisms, such as the Mexican axolotl, have the capacity to regenerate complicated biological structures throughout their lives. Which molecular pathways are sufficient to induce a complete endogenous regenerative response in injured tissue is an important question that remains unanswered. Using a gain-of-function regeneration assay, known as the Accessory Limb Model (ALM), we and others have begun to identify the molecular underpinnings of the three essential requirements for limb regeneration; wounding, neurotrophic signaling, and the induction of pattern from cells that retain positional memory. We have previously shown that treatment of Mexican axolotls with exogenous retinoic acid (RA) is sufficient to induce the formation of complete limb structures from blastemas that were generated by deviating a nerve bundle into an anterior-located wound site on the limb. Here we show that these ectopic structures are capable of regenerating and inducing new pattern to form when grafted into new anterior-located wounds. We additionally found that the expression of Alx4 decreases, and Shh expression increases in these anterior located blastemas, but not in the mature anterior tissues, supporting the hypothesis that RA treatment posteriorizes blastema tissue. Based on these and previous observations, we used the ALM assay to test the hypothesis that a complete regenerative response can be generated by treating anterior-located superficial limb wounds with a specific combination of growth factors at defined developmental stages. Our data shows that limb wounds that are first treated with a combination of FGF-2, FGF-8, and BMP-2, followed by RA treatment of the resultant mid-bud stage blastema, will result in the generation of limbs with complete proximal/distal and anterior/posterior limb axes. Thus, the minimal signaling requirements from the nerve and a positional disparity are achieved with the application of this specific combination of signaling molecules.
Assuntos
Ambystoma mexicanum/fisiologia , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Extremidades/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regeneração , Tretinoína/metabolismoRESUMO
Loss of regenerative capacity is a normal part of aging. However, some organisms, such as the Mexican axolotl, retain striking regenerative capacity throughout their lives. Moreover, the development of age-related diseases is rare in this organism. In this review, we will explore how axolotls are used as a model system to study regenerative processes, the exciting new technological advancements now available for this model, and how we can apply the lessons we learn from studying regeneration in the axolotl to understand, and potentially treat, age-related decline in humans.
Assuntos
Envelhecimento/fisiologia , Ambystoma mexicanum/fisiologia , Regeneração/fisiologia , Animais , HumanosRESUMO
The voltage-gated sodium channel (NaV), NaV1.1, is well-studied in the central nervous system; conversely, its contribution to peripheral sensory neuron function is more enigmatic. Here, we identify a new role for NaV1.1 in mammalian proprioception. RNAscope analysis and in vitro patch-clamp recordings in genetically identified mouse proprioceptors show ubiquitous channel expression and significant contributions to intrinsic excitability. Notably, genetic deletion of NaV1.1 in sensory neurons caused profound and visible motor coordination deficits in conditional knockout mice of both sexes, similar to conditional Piezo2-knockout animals, suggesting that this channel is a major contributor to sensory proprioceptive transmission. Ex vivo muscle afferent recordings from conditional knockout mice found that loss of NaV1.1 leads to inconsistent and unreliable proprioceptor firing characterized by action potential failures during static muscle stretch; conversely, afferent responses to dynamic vibrations were unaffected. This suggests that while a combination of Piezo2 and other NaV isoforms is sufficient to elicit activity in response to transient stimuli, NaV1.1 is required for transmission of receptor potentials generated during sustained muscle stretch. Impressively, recordings from afferents of heterozygous conditional knockout animals were similarly impaired, and heterozygous conditional knockout mice also exhibited motor behavioral deficits. Thus, NaV1.1 haploinsufficiency in sensory neurons impairs both proprioceptor function and motor behaviors. Importantly, human patients harboring NaV1.1 loss-of-function mutations often present with motor delays and ataxia; therefore, our data suggest that sensory neuron dysfunction contributes to the clinical manifestations of neurological disorders in which NaV1.1 function is compromised. Collectively, we present the first evidence that NaV1.1 is essential for mammalian proprioceptive signaling and behaviors.
Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1 , Células Receptoras Sensoriais , Animais , Feminino , Humanos , Masculino , Camundongos , Potenciais de Ação , Camundongos Knockout , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismoRESUMO
The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.
RESUMO
The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the 'tiny-limb' stage, which is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the accessory limb model (ALM), we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the neural modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb.
Humans' ability to regrow lost or damaged body parts is relatively limited, but some animals, such as the axolotl (a Mexican salamander), can regenerate complex body parts, like legs, many times over their lives. Studying regeneration in these animals could help researchers enhance humans' abilities to heal. One way to do this is using the Accessory Limb Model (ALM), where scientists wound an axolotl's leg, and study the additional leg that grows from the wound. The first stage of limb regeneration creates a new leg that has the right structure and shape. The new leg is very small so the next phase involves growing the leg until its size matches the rest of the animal. This phase must be controlled so that the limb stops growing when it reaches the right size, but how this regulation works is unclear. Previous research suggests that the number of nerves in the new leg could be important. Wells et al. used a ALM to study how the size of regenerating limbs is controlled. They found that changing the number of nerves connected to the new leg altered its size, with more nerves leading to a larger leg. Next, Wells et al. created a system that used transplanted nerve bundles of different sizes to grow new legs in different sized axolotls. This showed that the size of the resulting leg is controlled by the number of nerves connecting it to the CNS. Wells et al. also showed that nerves can only control regeneration if they remain connected to the central nervous system. These results explain how size is controlled during limb regeneration in axolotls, highlighting the fact that regrowth is directly controlled by the number of nerves connected to a regenerating leg. Much more work is needed to reveal the details of this process and the signals nerves use to control growth. It will also be important to determine whether this control system is exclusive to axolotls, or whether other animals also use it.
Assuntos
Ambystoma mexicanum/fisiologia , Membro Anterior/fisiologia , Regeneração , Animais , Diferenciação CelularRESUMO
Urodele amphibians such as the axolotl regenerate complete limbs as adults, and understanding how the "blueprint", or pattern, of the regenerate is established and manipulated are areas of intense interest. Nutrient signaling plays an important role in pattern formation during regeneration. Retinoic acid signaling is the most characterized pathway during this process. Exogenous retinoic acid (RA) reprograms the pattern information in regenerating cells to a more posterior, ventral, and proximal identity. Vitamin D signaling shares several molecular similarities with RA and has been shown to alter pattern formation during zebrafish pectoral fin regeneration. To determine if exogenous Vitamin D signaling is capable of reprograming pattern in the axolotl limb blastema, we treated regenerating limbs with a potent Vitamin D agonist. Under the studied conditions, exogenous Vitamin D did not act in a manner similar to RA and failed to proximalize the pattern of the resulting regenerates. The Vitamin D treatment did result in several skeletal defects during regeneration, including carpal fusions along the A/P axis; failure to integrate the newly regenerated tissue with the existing tissue, formation of ectopic nodules of cartilage at the site of amputation, and altered bone morphology in uninjured skeletal tissue.