Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7972): 72-77, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37168015

RESUMO

A recent study demonstrated near-ambient superconductivity in nitrogen-doped lutetium hydride1. This stimulated a worldwide interest in exploring room-temperature superconductivity at low pressures. Here, by using a high-pressure and high-temperature synthesis technique, we have obtained nitrogen-doped lutetium hydride (LuH2±xNy), which has a dark-blue colour and a structure with the space group [Formula: see text] as evidenced by X-ray diffraction. This structure is the same as that reported in ref. 1, with a slight difference in lattice constant. Raman spectroscopy of our samples also showed patterns similar to those observed in ref. 1. Energy-dispersive X-ray spectroscopy confirmed the presence of nitrogen in the samples. We observed a metallic behaviour from 350 K to 2 K at ambient pressure. On applying pressures from 2.1 GPa to 41 GPa, we observed a gradual colour change from dark blue to violet to pink-red. By measuring the resistance at pressures ranging from 0.4 GPa to 40.1 GPa, we observed a progressively improved metallic behaviour; however, superconductivity was not observed above 2 K. Temperature dependence of magnetization at high pressure shows a very weak positive signal between 100 K and 320 K, and the magnetization increases with an increase in magnetic field at 100 K. All of these are not expected for superconductivity above 100 K. Thus, we conclude the absence of near-ambient superconductivity in this nitrogen-doped lutetium hydride at pressures below 40.1 GPa.

2.
Proc Natl Acad Sci U S A ; 118(51)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916295

RESUMO

In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.

3.
Nano Lett ; 22(23): 9450-9456, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441557

RESUMO

The vortex core can be regarded as a nanoscale confined system for quasiparticles in a type-II superconductor. It is very interesting to investigate the interplay between the vortex core and other microscopic quantum confined systems. We observe band-like canals with the width of about 15 nm on the surface of KCa2(Fe1-xNix)4As4F2 (x = 0.05) by scanning tunneling microscopy. Some canals suppress superconductivity and confine parallel standing waves due to the quasiparticle interference. Upon magnetic fields being applied, some elongated vortices are formed within canals showing bamboo-like one-dimensional vortex chains. Interestingly, the confined vortex cores are elongated roughly along the perpendicular direction of canals, and the local density of states at positive and negative energies shows an in-phase oscillation at zero field; but, it becomes out-of-phase crossing the vortex cores. Our work reveals a new type of vortex patterns in confined canals and its interplay with the quasiparticle interference.

4.
Phys Rev Lett ; 126(25): 257002, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241500

RESUMO

We report the observation of discrete bound states with the energy levels deviating from the widely believed ratio of 1∶3∶5 in the vortices of an iron-based superconductor KCa_{2}Fe_{4}As_{4}F_{2} through scanning tunneling microscopy (STM). Meanwhile Friedel oscillations of vortex bound states are also observed for the first time in related vortices. By doing self-consistent calculations of Bogoliubov-de Gennes equations, we find that at extreme quantum limit, the superconducting order parameter exhibits a Friedel-like oscillation, which modifies the energy levels of the vortex bound states and explains why it deviates from the ratio of 1∶3∶5. The observed Friedel oscillations of the bound states can also be roughly interpreted by the theoretical calculations, however some features at high energies could not be explained. We attribute this discrepancy to the high energy bound states with the influence of nearby impurities. Our combined STM measurement and the self-consistent calculations illustrate a generalized feature of vortex bound states in type-II superconductors.

5.
Nano Lett ; 20(5): 2965-2972, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31995387

RESUMO

Topological superconductivity is one of the frontier research directions in condensed matter physics. One of the unique elementary excitations in topological superconducting state is the Majorana Fermion (mode) which is its own antiparticle and obeys the non-Abelian statistics and is thus useful for constructing the fault-tolerant quantum computation. The evidence for Majorana Fermions (mode) in condensed matter is now quickly accumulated. We deposit Bi islands on the iron-based superconductors Fe(Te,Se) and find the easily achievable zero energy modes on the tunneling spectra on some Bi islands. The zero energy mode is robust and appears everywhere on the island. Temperature and magnetic field dependence of the zero energy mode are also investigated. We attribute these zero energy modes to the Majorana modes due to the proximity effect-induced topological superconductivity on the Bi islands with strong spin-orbit coupling effect.

6.
Phys Rev Lett ; 113(18): 186402, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396384

RESUMO

In layered superconductors the order parameter may be modulated within the unit cell, leading to nontrivial modifications of the vortex core if the interlayer coherence length ξ(c)(T) is comparable to the interlayer spacing. In the iron pnictide SmFeAs(O,F) (T(c)≈50 K) this occurs below a crossover temperature T(⋆)≈41 K, which separates two regimes of vortices: anisotropic Abrikosov-like at high and Josephson-like at low temperatures. Yet in the transition region around T(⋆), hybrid vortices between these two characteristics appear. Only in this region around T(⋆) and for magnetic fields well aligned with the FeAs layers, we observe oscillations of the c-axis critical current j(c)(H) periodic in 1/sqrt[H] due to a delicate balance of intervortex forces and interaction with the layered potential. j(c)(H) shows pronounced maxima when a hexagonal vortex lattice is commensurate with the underlying crystal structure. The narrow temperature window in which oscillations are observed suggests a significant suppression of the order parameter between the superconducting layers in SmFeAs(O,F), despite its low coherence length anisotropy (γ(ξ)≈3-5).

7.
Nat Commun ; 15(1): 5104, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877022

RESUMO

The recent discovery of superconductivity in infinite-layer nickelate films has sparked significant interest and expanded the realm of superconductors, in which the infinite-layer structure and proper chemical doping are both of the essence. Nonetheless, the reasons for the absence of superconductivity in bulk infinite-layer nickelates remain puzzling. Herein, we investigate atomic defects and electronic structures in bulk infinite-layer Nd0.8Sr0.2NiO2 using scanning transmission electron microscopy. Our observations reveal the presence of three-dimensional (3D) block-like structural domains resulting from intersecting defect structures, disrupting the continuity within crystal grains, which could be a crucial factor in giving rise to the insulating character and inhibiting the emergence of superconductivity. Moreover, the infinite-layer structure, without complete topotactic reduction, retains interstitial oxygen atoms on the Nd atomic plane in bulk nickelates, possibly further aggravating the local distortions of NiO2 planes and hindering the superconductivity. These findings shed light on the existence of structural and atomic defects in bulk nickelates and provide valuable insights into the influence of proper topotactic reduction and structural orders on superconductivity.

8.
Sci Rep ; 14(1): 9580, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671053

RESUMO

Kagome superconductors AV3Sb5 (A = K, Rb, and Cs) have attracted enormous interest due to the coexistence of charge density wave (CDW) order, unconventional superconductivity (SC) and anomalous Hall effect (AHE). In this paper, we reported an intensive investigation on Cs(V1-xTax)3Sb5 single crystals with systematic Ta doping. Ta was confirmed to be doped into V-site in the Kagome layer from both single crystal X-ray diffraction structural refinement and scanning transmission electron microscopy observation. The highest Ta doping level was found to be about 16%, which is more than twice as much as 7% in Nb-doped CsV3Sb5. With the increase of Ta doping, CDW order was gradually suppressed and finally vanished when the doping level reached to more than 8%. Meanwhile, superconductivity was enhanced with a maximum critical temperature (Tc) of 5.3 K, which is the highest Tc in the bulk crystal of this Kagome system at ambient pressure so far. The µ0Hc2(T) behavior demonstrates that the system is still a two-band superconductor after Ta doping. Based on the electrical transport measurement, a phase diagram was set up to exhibit the evolution of CDW and SC in the Cs(V1-xTax)3Sb5 system. These findings pave a new way to search for new superconductors with higher Tc in the AV3Sb5 family and establish a new platform for tuning and controlling the multiple orders and superconducting states.

9.
Phys Rev Lett ; 110(18): 187002, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683238

RESUMO

We show that electronic Raman scattering affords a window into the essential properties of the pairing potential V(k,k') of iron-based superconductors. In Ba0.6K0.4Fe2As2 we observe band dependent energy gaps along with excitonic Bardasis-Schrieffer modes characterizing, respectively, the dominant and subdominant pairing channel. The d(x(2)-y(2)) symmetry of all excitons allows us to identify the subdominant channel to originate from the interaction between the electron bands. Consequently, the dominant channel driving superconductivity results from the interaction between the electron and hole bands and has the full lattice symmetry. The results in Rb(0.8)Fe(1.6)Se(2) along with earlier ones in Ba(Fe(0.939)Co(0.061))(2)As(2) highlight the influence of the Fermi surface topology on the pairing interactions.

10.
Adv Mater ; 35(26): e2301021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36944139

RESUMO

Carbonates (CO3 2- ) have always been known as impurities to degrade the superconductivity in cuprate high-Tc superconductors. Herein, the atomic arrangement of carbonates is directly visualized in (Cu,C)Ba2 Ca3 Cu4 O11+δ via integrated differential phase contrast (iDPC) combined with state-of-the-art scanning transmission electron microscopy. The carbon atoms replace Cu atoms in the charge-reservoir layers, contributing to the formation of carbonates through strong orbital hybridization with the surrounding oxygen atoms. Using first-principles calculations, the spatial configuration of the carbonate groups is confirmed and their influence on the local crystal lattice and electronic states is further investigated. The carbonates not only accommodate distortions by improving the flatness of the outer CuO2 layers but also reduce the density of states at the Fermi level. These two factors play competitive roles to affect the superconductivity. This study provides direct evidence of the presence of CO3 2- groups and gains an insight into the underlying mechanism of superconductivity in oxycarbonate superconductors.

11.
Rep Prog Phys ; 75(11): 112501, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23073361

RESUMO

Since the discovery of high temperature superconductivity in iron pnictides in early 2008, many iron-based superconductors with different structures have been discovered, with the highest transition temperature to date being 57 K. By the end of 2010, another kind of new superconductor, the Fe-based chalcogenide K(1-x)Fe(2-y)Se(2) was discovered. A naive counting of the electrons in the system would lead to the conclusion that the system is heavily electron overdoped (~0.4 e/Fe). Band structure calculations further support this speculation and predict that the hole pockets which are found in the iron pnictides may be missing. This greatly challenges the widely perceived picture that the superconducting pairing is established by exchanging antiferromagnetic (AF) spin fluctuations and that the electrons are scattered between the electron and hole pockets. Later, it was found that both potassium and iron might be deficient in K(1-x)Fe(2-y)Se(2), yielding to a picture of phase separation. In this picture the superconducting phase and the AF phase may separate spatially into different regions. This generates further curiosity about what the real superconducting phase is, what the relationship is between the superconducting phase and the AF phase, and what the parent state is for the superconducting phase. We propose a 'spider web' model for the phase separation, which can explain both the transport and magnetic data. In this paper, we review the status of research in this rapidly growing field and list the important and unresolved issues as perspectives for future research.

12.
Phys Rev Lett ; 108(22): 227002, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003642

RESUMO

We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.

13.
Innovation (Camb) ; 3(1): 100202, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35059683

RESUMO

Superconductivity has been discovered recently in infinite-layer nickel-based 112 thin films R 1-x A xNiO2 (R = La, Nd, Pr and A = Sr, Ca). They are isostructural to the infinite-layer cuprate (Ca,Sr)CuO2 and are supposed to have a formal Ni 3d 9 valence, thus providing a new platform to study the unconventional pairing mechanism of high-temperature superconductors. This important discovery immediately triggers a huge amount of innovative scientific curiosity in the field. In this paper, we try to give an overview of the recent research progress on the newly found superconducting nickelate systems, both from experimental and theoretical aspects. We mainly focus on the electronic structures, magnetic excitations, phase diagrams and superconducting gaps, and finally make some open discussions for possible pairing symmetries in Ni-based 112 systems.

14.
J Phys Condens Matter ; 34(47)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36162400

RESUMO

Chromium (Cr) is a transition metal element with 3dorbital electrons. In most compounds containing Cr, due to the correlation effect, twofold features, namely localization and itinerancy are expected. The localization gives rise to a magnetic moment, while the latter exhibits as the effective coherent weight for conductivity. Here we report the physical properties of Cr3Ru compounds with body-centered cubic (bcc) and A15 structures by using multiple experimental tools. The resistivity measurements show sharp superconducting transitions atTc= 2.77 K andTc= 3.37 K for the bcc and A15 structures, respectively. A high residual resistivity exists in both phases. Magnetization measurements also show rather narrow superconducting transitions, with a clear hump feature in the intermediate temperature region (about 150 K), which may be ascribed to the remaining antiferromagnetic spin fluctuations. A pronounced second peak effect has been observed in magnetization hysteresis loops in the superconducting state only for samples with bcc structure. The specific heat coefficient reveals a clear jump at critical temperatures (Tc). We find thats-wave gaps can be adopted to fit the low temperature specific heat data of both samples yielding ratios of2Δ/kBTcabout 3.6, indicating a moderate pairing strength. Interestingly, the Wilson ratiosRW=Aχ0/γnare 3.81 and 3.62 for the bcc and A15 phases, suggesting a moderate correlation effect of conducting electrons in the normal state. Besides, for samples with A15 structure, another specific heat anomaly occurs at about 0.85 K and is sensitive to magnetic fields. In addition, by applying high pressures, both systems will exhibit an enhancement ofTcwith a rate of about 0.019 K GPa-1and 0.013 K GPa-1for the bcc and A15 phases, respectively. Our combinatory results point to unusual behavior of both superconducting and normal states in these two Cr based alloys.

15.
Nat Commun ; 13(1): 3461, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710635

RESUMO

The kagome lattice provides a fertile platform to explore novel symmetry-breaking states. Charge-density wave (CDW) instabilities have been recently discovered in a new kagome metal family, commonly considered to arise from Fermi-surface instabilities. Here we report the observation of Raman-active CDW amplitude modes in CsV3Sb5, which are collective excitations typically thought to emerge out of frozen soft phonons, although phonon softening is elusive experimentally. The amplitude modes strongly hybridize with other superlattice modes, imparting them with clear temperature-dependent frequency shift and broadening, rarely seen in other known CDW materials. Both the mode mixing and the large amplitude mode frequencies suggest that the CDW exhibits the character of strong electron-phonon coupling, a regime in which phonon softening can cease to exist. Our work highlights the importance of the lattice degree of freedom in the CDW formation and points to the complex nature of the mechanism.

16.
J Am Chem Soc ; 133(6): 1751-3, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21265510

RESUMO

We successfully synthesized the copper-based pnictide LiCu(2)P(2), which was reported as a superconductor with T(c) = 3.7 K before. The temperature dependence of resistivity and DC magnetization was measured on both polycrystalline and single-crystalline LiCu(2)P(2). However, our repeatable synthesizing and measurements showed no superconducting transition either in resistivity or DC magnetization above 2 K. A metallic behavior can be seen in resistivity, and a Curie-Weiss behavior was observed in DC magnetization from 2 to 300 K. We have also carried out the Hall effect and MR measurements on the sample, from which we conclude that the LiCu(2)P(2) has a single-band character. We also synthesized the polycrystalline Li(1-x)Cu(2)P(2), LiCu(2-x)P(2), and Li(1+x)Cu(2-x)P(2) with different stoichiometries, and observed no superconductivity in all the samples.

17.
J Phys Condens Matter ; 33(26)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33902020

RESUMO

Recently, superconductivity at about 9-15 K was discovered in Nd1-xSrxNiO2(Nd-112,x≈ 0.125-0.25) infinite-layer thin films, which has stimulated enormous interests in related rare-earth nickelates. Usually, the first step to synthesize this 112 phase is to fabricate theRNiO3(R-113,R: rare-earth element) phase, however, it was reported that the 113 phase is very difficult to be synthesized successfully due to the formation of unusual Ni3+oxidation state. And the difficulty of preparation is enhanced as the ionic radius of rare-earth element decreases. In this work, we report the synthesis and investigation on multiple physical properties of polycrystalline perovskites Sm1-xSrxNiO3(x= 0, 0.2) in which the ionic radius of Sm3+is smaller than that of Pr3+and Nd3+in related superconducting thin films. The structural and compositional analyses conducted by x-ray diffraction and energy dispersive x-ray spectrum reveal that the samples mainly contain the perovskite phase of Sm1-xSrxNiO3with small amount of NiO impurities. Magnetization and resistivity measurements indicate that the parent phase SmNiO3undergoes a paramagnetic-antiferromagnetic transition at about 224 K on a global insulating background. In contrast, the Sr-doped sample Sm0.8Sr0.2NiO3shows a metallic behavior from 300 K down to about 12 K, while below 12 K the resistivity exhibits a slight logarithmic increase. Meanwhile, from the magnetization curves, we can see that a possible spin-glass state occurs below 12 K in Sm0.8Sr0.2NiO3. Using a soft chemical reduction method, we also obtain the infinite-layer phase Sm0.8Sr0.2NiO2with square NiO2planes. The compound shows an insulating behavior which can be described by the three-dimensional variable-range-hopping model. And superconductivity is still absent in the polycrystalline Sm0.8Sr0.2NiO2.

18.
Nat Commun ; 12(1): 6727, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795303

RESUMO

In transition metal compounds, due to the interplay of charge, spin, lattice and orbital degrees of freedom, many intertwined orders exist with close energies. One of the commonly observed states is the so-called nematic electron state, which breaks the in-plane rotational symmetry. This nematic state appears in cuprates, iron-based superconductor, etc. Nematicity may coexist, affect, cooperate or compete with other orders. Here we show the anisotropic in-plane electronic state and superconductivity in a recently discovered kagome metal CsV3Sb5 by measuring c-axis resistivity with the in-plane rotation of magnetic field. We observe a twofold symmetry of superconductivity in the superconducting state and a unique in-plane nematic electronic state in normal state when rotating the in-plane magnetic field. Interestingly these two orders are orthogonal to each other in terms of the field direction of the minimum resistivity. Our results shed new light in understanding non-trivial physical properties of CsV3Sb5.

19.
Phys Rev Lett ; 104(8): 087002, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366959

RESUMO

We report the effect of alpha-particle irradiation on the reduction of the critical temperature T{c} of a NdFeAs(OF) single crystal. Our data indicate that irradiation defects cause both nonmagnetic and magnetic scattering, resulting in the Kondo-like excess resistance Delta rho(T) proportional to lnT over 2 decades in temperatures above T{c}. The critical density of magnetic irradiation defects which suppresses T{c} is found to be much higher than those for cuprates and multiband BCS superconductors. We suggest that such anomalously weak pair breaking by irradiation defects indicates that magnetic scattering in pnictides is coupled with pairing interactions mediated by spin fluctuations.

20.
J Phys Condens Matter ; 33(7): 075503, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33137795

RESUMO

Superconductivity was recently observed in Sr-doped NdNiO2 film after a long pursuit, which inspires us to investigate another Ruddlesden-Popper-based nickelate Nd4Ni3O8 which may hold an antiferromagnetic order and a charge stripe order. Through ab initio calculations, we find that the obtained results turn out to be similar to those of La4Ni3O8. However, we propose that Ni1+ ions in the charge stripe order observed in La4Ni3O8 are in fact antiferromagnetically coupled through a twofold double-exchange mediated by the intermediate Ni2+ ion and the stretched Ni1+-O bond. Under high pressure, the extension of the stretched Ni1+-O bond is not favored and the system will be pushed into a meta-stable insulating state. Our picture can successfully explain the temperature dependence of resistivity under high pressure of La4Ni3O8, and shows also consistency with the insulating behavior of Nd4Ni3O8 observed in recent experiment. Considering a +1.33 average valence of Ni in Nd4Ni3O8, which is very close to that of the Sr-doped NdNiO2, our results support the earlier proposal that a possible way leading to metallicity and even superconductivity is to suppress the existing antiferromagnetism and charge ordering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA