RESUMO
Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.
Assuntos
RNA de Transferência , tRNA Metiltransferases , Humanos , Metilação , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismoRESUMO
The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (â¼200 000 versus â¼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.
Assuntos
Precursores de RNA , Splicing de RNA , Proteínas de Ligação a RNA , Degeneração Retiniana , Animais , Humanos , Metilação , Conformação de Ácido Nucleico , Degeneração Retiniana/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Spliceossomos/genética , Spliceossomos/metabolismoRESUMO
Our previous studies have revealed that GADD45α is a liable proapoptotic protein, which undergoes MDM2-dependent constitutive ubiquitylation and degradation in resting cancer cells. Under chemotherapeutic agent (such as arsenite, 5-Fu and VP-16) exposure, DAPK1 functions as a novel p53 (also known as TP53) kinase, which induces phosphorylation of p53 at Ser15 and transactivates the p53 target Ets-1, to synergistically repress IKKß-dependent MDM2 stability, and ultimately removes the inhibitory effect of MDM2 on GADD45α, resulting in GADD45α accumulation and cell apoptosis. In the current study, we show that there is a strong induction of ISG20L1 (also known as AEN) expression in several cancer cell lines under exposure of arsenite and other chemotherapeutic agents. Surprisingly, although originally identified as a transcriptional target of p53, ISG20L1 induction was not controlled by p53. Instead, ISG20L1 functioned as upstream activator of p53 by interacting with DAPK1, and plays an essential role in promoting DAPK1-p53 complex formation and the subsequent activation of Ets-1/IKKß/MDM2/GADD45α cascade. Therefore, our findings have revealed novel function of ISG20L1 in mediating cancer cell apoptosis induced by chemotherapeutic agents via modulating activation of the DAPK1- and p53-dependent cell death pathway.
Assuntos
Arsenitos , Proteína Supressora de Tumor p53 , Apoptose , Arsenitos/metabolismo , Arsenitos/farmacologia , Quinase I-kappa B/metabolismo , Quinase I-kappa B/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Exorribonucleases/metabolismoRESUMO
BACKGROUND AND AIMS: Hyperlipidemia has been extensively recognized as a high-risk factor for NASH; however, clinical susceptibility to NASH is highly heterogeneous. The key controller(s) of NASH susceptibility in patients with hyperlipidemia has not yet been elucidated. Here, we aimed to reveal the key regulators of NASH in patients with hyperlipidemia and to explore its role and underlying mechanisms. APPROACH AND RESULTS: To identify the predominant suppressors of NASH in the setting of hyperlipidemia, we collected liver biopsy samples from patients with hyperlipidemia, with or without NASH, and performed RNA-sequencing analysis. Notably, decreased Lineage specific Interacting Motif domain only 7 (LMO7) expression robustly correlated with the occurrence and severity of NASH. Although overexpression of LMO7 effectively blocked hepatic lipid accumulation and inflammation, LMO7 deficiency in hepatocytes greatly exacerbated diet-induced NASH progression. Mechanistically, lysine 48 (K48)-linked ubiquitin-mediated proteasomal degradation of tripartite motif-containing 47 (TRIM47) and subsequent inactivation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) cascade are required for the protective function of LMO7 in NASH. CONCLUSIONS: These findings provide proof-of-concept evidence supporting LMO7 as a robust suppressor of NASH in the context of hyperlipidemia, indicating that targeting the LMO7-TRIM47 axis is a promising therapeutic strategy for NASH.
Assuntos
Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Hiperlipidemias/complicações , Fígado/patologia , Inflamação/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas com Motivo Tripartido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismoRESUMO
Effective screening and early detection are critical to improve the prognosis of gastric cancer (GC). Our study aims to explore noninvasive multianalytical biomarkers and construct integrative models for preliminary risk assessment and GC detection. Whole genomewide methylation marker discovery was conducted with CpG tandems target amplification (CTTA) in cfDNA from large asymptomatic screening participants in a high-risk area of GC. The methylation and mutation candidates were validated simultaneously using one plasma from patients at various gastric lesion stages by multiplex profiling with Mutation Capsule Plus (MCP). Helicobacter pylori specific antibodies were detected with a recomLine assay. Integrated models were constructed and validated by the combination of multianalytical biomarkers. A total of 146 and 120 novel methylation markers were found in CpG islands and promoter regions across the genome with CTTA. The methylation markers together with the candidate mutations were validated with MCP and used to establish a 133-methylation-marker panel for risk assessment of suspicious precancerous lesions and GC cases and a 49-methylation-marker panel as well as a 144-amplicon-mutation panel for GC detection. An integrated model comprising both methylation and specific antibody panels performed better for risk assessment than a traditional model (AUC, 0.83 and 0.63, P < .001). A second model for GC detection integrating methylation and mutation panels also outperformed the traditional model (AUC, 0.82 and 0.68, P = .005). Our study established methylation, mutation and H. pylori-specific antibody panels and constructed two integrated models for risk assessment and GC screening. Our findings provide new insights for a more precise GC screening strategy in the future.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Metilação de DNA , Detecção Precoce de Câncer , Biomarcadores , Medição de Risco , Helicobacter pylori/genética , Biomarcadores Tumorais/genética , Ilhas de CpG , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologiaRESUMO
Systemic lupus erythematosus (SLE) is a typical systemic autoimmune disease that manifests as skin rash, arthritis, lymphadenopathy, and multiple organ lesions. Epigenetics, including DNA methylation, histone modification, and non-coding RNA regulation, mainly affect the function and characteristics of cells through the regulation of gene transcription or translation. Increasing evidence indicates that there are a variety of complex epigenetic effects in patients with SLE, which interfere with the differentiation and function of T, and B lymphocytes, monocytes, and neutrophils, and enhance the expression of SLE-associated pathogenic genes. This paper summarizes our currently knowledge regarding pathogenesis of SLE, and introduces current advances in the epigenetic regulation of SLE from three aspects: immune function, inflammatory response, and lupus complications. We propose that epigenetic changes could be used as potential biomarkers and therapeutic targets of SLE.
Assuntos
Artrite , Lúpus Eritematoso Sistêmico , Humanos , Epigênese Genética , Metilação de DNA , Artrite/genética , Diferenciação CelularRESUMO
Primary immune thrombocytopenia (ITP) is an autoimmune bleeding disorder, and chemokines have been shown to be dysregulated in autoimmune disorders. We conducted a prospective analysis to identify potential chemokines that could enhance the diagnostic accuracy and bleeding evaluation in ITP patients. In the discovery cohort, a Luminex-based assay was employed to quantify concentrations of plasma multiple chemokines. These levels were subjected to comparative analysis using a cohort of 60 ITP patients and 17 patients with thrombocytopenia other than ITP (non-ITP). Additionally, comparative evaluation was conducted between a subgroup of 12 ITP patients characterised by bleeding episodes (ITP-B, as defined by an ITP-2016 bleeding grade ≥2) and 33 ITP patients without bleeding episodes (ITP-NB, as defined by an ITP-2016 bleeding grade ≤1). Machine learning algorithms further identified CCL20, interleukin-2, CCL26, CCL25, and CXCL1 as promising indicators for accurate diagnosis of ITP and CCL21, CXCL8, CXCL10, CCL8, CCL3, and CCL15 as biomarkers for assessing bleeding risk in ITP patients. The results were confirmed using enzyme-linked immunosorbent assays in a validation cohort (43 ITP patients and 19 non-ITP patients). Overall, the findings suggest that specific chemokines show promise as potential biomarkers for diagnosis and bleeding evaluation in ITP patients.
RESUMO
Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.
Assuntos
Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/enzimologia , Bombyx/genética , Bombyx/virologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/virologia , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofatores de Molibdênio , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Ácido Úrico/metabolismoRESUMO
3-Indole-3-one is a key intermediate in the synthesis of many drugs and plays an important role in synthetic chemistry and biochemistry. A new method for synthesizing trifluoromethylated 3-indoleketones by Pd(0)-catalyzed carbonylation was introduced. In the absence of additives, 1-chloro-3,3,3-trifluoropropyl (an inexpensive and environmentally friendly synthetic block of trifluoromethyl) reacts with indole and carbon monoxide to generate trifluoromethylindole ketones with good yields, regioselectivity, and chemical selectivity; furthermore, the products exhibit strong resistance to basic functional groups, such as alkynes, aldehydes, and esters. In addition to the conversion of indole compounds into corresponding products, pyrrole and heteroindole may be suitable for corresponding chemical transformations. This study provides a synthetic method for the further construction of trifluoromethylated 3-indole ketones.
RESUMO
Chronic stress enhances the risk for psychiatric disorders and induces depression and cognitive impairment. Gamma oscillations are essential for neurocircuit function, emotion, and cognition. However, the influence of gamma entrainment by sensory stimuli on specific aspects of chronic stress-induced responses remains unclear. Mice were subjected to corticosterone (CORT) administration and chronic restraint stress (CRS) for weeks, followed by rhythmic gamma frequency light flickering exposure. Local field potentials (LFPs) were recorded from the V1, CA1, and PFC regions to verify the light flicker on gamma oscillations. Behavioral tests were used to examine stress-related and memory-related behaviors. Golgi staining was performed to observe changes in spine morphology. Synaptosomes were isolated to determine the expression of synapse-related proteins through immunoblotting. RNA sequencing (RNA-seq) was applied to explore specific changes in the transcriptome. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qPCR), and ELISA were used to evaluate microglial activation and cytokine levels. In this study, we demonstrated that rhythmic 40 Hz LF attenuated stress-related behavior and cognitive impairments by ameliorating the microstructural alterations in spine morphology and increasing the expression of GluN2A and GluA1 in chronically stressed mice. Transcriptome analysis revealed that significantly downregulated genes in LF-exposed CRS mice were enriched in neuroimmune-related signaling pathways. Rhythmic 40 Hz LF exposure significantly decreased the number of Iba1-positive microglia in the PFC and hippocampus, and the expression levels of the M1 markers of microglia iNOS and CD68 were reduced significantly in CRS mice. In addition, 40 Hz LF exposure suppressed the secretion of cytokines IL-12, which could regulate the production of IFN-γ and IL-10 in stressed mice. Our results demonstrate that exposure to rhythmic 40 Hz LF induces the neuroimmune response and downregulation of neuroinflammation with attenuated stress-related behaviors and cognitive function in CRS-induced mice. Our findings highlight the importance of sensory-evoked gamma entrainment as a potential therapeutic strategy for stress-related disorders treatment. Abbreviations: CORT, Chronic corticosterone treatment; CRS, Chronic restraint stress; IACUC, Institutional Animal Care and Use Committee; LF, light flickers; FST, Forced swim test; NSFT, Novelty-suppressed feeding test; SPT, Sucrose preference test; NSFT, Novelty-suppressed feeding; qPCR, Quantitative real-time polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; PBS-T, phosphate-buffered saline plus 0.1% Tween 20; PVDF, polyvinylidene fluoride; GFAP, Glial fibrillary acidic protein; DAPI, 4',6-Diamid- ino-2-phenylindole; Iba1, Ionized calcium-binding adaptor molecule 1; iNOS, Inducible nitric oxide synthase; IL-10, Interleukin-10; IL6, Interleukin 6; IL-1ß, Interleukin 1ß; IL-12, Interleukin 12; TNF-α, Tumor necrosis factor alpha; IFN-γ, Interferon-gamma; TLR6 and 9, Toll-like Receptor 6 and 9.
Assuntos
Disfunção Cognitiva , Citocinas , Ritmo Gama , Estresse Psicológico , Animais , Camundongos , Estresse Psicológico/metabolismo , Masculino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Corticosterona/metabolismo , Doenças Neuroinflamatórias/metabolismo , Luz , Comportamento Animal , Modelos Animais de DoençasRESUMO
ß-Alanine is the only ß-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible ß-alanine producer with enhanced metabolic flux towards ß-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the ß-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L ß-alanine was achieved at 80 h. This is the highest titer of ß-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.
Assuntos
Escherichia coli , Engenharia Metabólica , Redes e Vias Metabólicas , beta-Alanina , Escherichia coli/genética , Escherichia coli/metabolismo , beta-Alanina/metabolismo , beta-Alanina/biossíntese , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismoRESUMO
BACKGROUND: Tertiary lymphoid organs (TLOs) are ectopic lymphoid organs developed in nonlymphoid tissues with chronic inflammation, but little is known about their existence in different types of vascular diseases and the mechanism that mediated their development. METHODS: To take advantage of single-cell RNA sequencing techniques, we integrated 28 single-cell RNA sequencing data sets containing 5 vascular disease models (atherosclerosis, abdominal aortic aneurysm, intimal hyperplasia, isograft, and allograft) to explore TLOs existence and environment supporting its growth systematically. We also searched Medline, Embase, PubMed, and Web of Science from inception to January 2022 for published histological images of vascular remodeling for histological evidence to support TLO genesis. RESULTS: Accumulation and infiltration of innate and adaptive immune cells have been observed in various remodeling vessels. Interestingly, the proportion of such immune cells incrementally increases from atherosclerosis to intimal hyperplasia, abdominal aortic aneurysm, isograft, and allograft. Importantly, we uncovered that TLO structure cells, such as follicular helper T cells and germinal center B cells, present in all remodeled vessels. Among myeloid cells and lymphocytes, inflammatory macrophages, and T helper 17 cells are the major lymphoid tissue inducer cells which were found to be positively associated with the numbers of TLO structural cells in remodeled vessels. Vascular stromal cells also actively participate in vascular TLO genesis by communicating with myeloid cells and lymphocytes via CCLs (C-C motif chemokine ligands), CXCL (C-X-C motif ligand), lymphotoxin, BMP (bone morphogenetic protein) chemotactic, FGF-2 (fibroblast growth factor-2), and IGF (insulin growth factor) proliferation mechanisms, particularly for lymphoid tissue inducer cell aggregation. Additionally, the interaction between stromal cells and immune cells modulates extracellular matrix remodeling. Among TLO structure cells, follicular helper T, and germinal center B cells have strong interactions via TCR (T-cell receptor), CD40 (cluster of differentiation 40), and CXCL signaling, to promote the development and maturation of the germinal center in TLO. Consistently, by reviewing the histological images from the literature, TLO genesis was found in those vascular remodeling models. CONCLUSIONS: Our analysis showed the existence of TLOs across 5 models of vascular diseases. The mechanisms that support TLOs formation in different models are heterogeneous. This study could be a valuable resource for understanding and discovering new therapeutic targets for various forms of vascular disease.
Assuntos
Aterosclerose , Remodelação Vascular , Humanos , Hiperplasia/patologia , Análise da Expressão Gênica de Célula Única , Tecido Linfoide/metabolismo , Aterosclerose/patologiaRESUMO
LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-ß (IL-1ß) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1ß, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.
Assuntos
Infecções Bacterianas , Doenças dos Peixes , Perciformes , Animais , Peixes , Proteínas de Peixes/genética , Hepcidinas/genética , Antibacterianos , Bactérias Gram-Negativas , Filogenia , Bactérias Gram-Positivas , Imunidade Inata/genética , Peptídeos AntimicrobianosRESUMO
High-temperature stress (HS) severely threatens agricultural production. Pleurotus ostreatus is cultivated in many parts of the world, and its growth is strongly affected by HS. We previously reported that metabolic rearrangement occurred in HS, but the gene expression levels of several key enzymes remained unchanged. Therefore, in this study, we investigated the contribution of posttranslational modifications of proteins to HS resistance in P. ostreatus. We found that the level of acetylation of P. ostreatus decreased under short-term HS treatment and increased as the duration of HS treatment increased. Acetylation omics revealed that almost all metabolic enzymes were acetylated. We found that deacetylation under HS can improve the growth recovery ability of mycelia, the activity of matrix-degrading enzyme, and the contents of antioxidants, such as nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), but can decreased H2O2 levels. In vitro acetylation experiments and point mutations revealed that the deacetylase SIRT2 increased the activity of glutathione transferases (GSTs) by deacetylating GST1 66K, GST2 206K, and GST2 233K. Together, SIRT2 is activated by short-term HS and improves its antioxidant activity by deacetylating GSTs, thereby improving the resistance of P. ostreatus to HS. In this study, we identified new non-histone substrate proteins and new lysine acetylation sites of SIRT2 under HS. We also discovered the role of non-histone acetylation in the adaptation of organisms to HS.
RESUMO
BACKGROUND: Many factors contribute to quality of life (QoL) in patients with schizophrenia, yet limited research examined these factors in patients in China. This cross-sectional study explores subjective QoL and its associated factors in patients. METHODS: The QoL was assessed using the Schizophrenia Quality of Life Scale (SQLS). Clinical symptoms were evaluated using the Brief Psychiatric Rating Scale (BPRS) and seven factors were extracted. Patient Health Questionnaire-9 (PHQ-9), and Generalized Anxiety Disorder Scale (GAD-7) were used to assess depression and anxiety. Cognitive impairment was assessed using the Ascertain Dementia 8 (AD8). The Treatment Emergent Symptom Scale (TESS) and Rating Scale for Extrapyramidal Side Effects (RSESE) were used to evaluate the side effects of medications. RESULTS: We recruited 270 patients (male:142,52.6%, mean age:41.9 ± 9.4 years). Positive correlations were observed between SQLS and its subdomains with the total score of BPRS, PHQ-9, GAD-7, AD8, TESS, and RSESE (all P < 0.005). Patients who were taking activating second-generation antipsychotics (SGAs) had lower scores on total SQLS, Motivation/ Energy domain of SQLS (SQLS-ME) as well as Symptoms/ Side effects domain of SQLS (SQLS-SS) compared to those taking non-activating SGAs (all P < 0.005). Multiple regression analysis showed that depressive/ anxiety symptoms and cognitive impairment had significant negative effects on QoL (P ≤ 0.001), while activating SGAs had a positive effect (P < 0.005). Blunted affect and unemployment were inversely associated with the motivation/energy domain (P < 0.001). CONCLUSION: Our findings emphasize the important role of depression/anxiety symptoms and cognitive impairment in the QoL of patients with chronic schizophrenia. Activating SGAs and employment may improve the QoL of these individuals. TRIAL REGISTRATION: This protocol was registered at chictr.org.cn (Identifier: ChiCTR2100043537).
Assuntos
Antipsicóticos , Emprego , Qualidade de Vida , Esquizofrenia , Humanos , Masculino , Qualidade de Vida/psicologia , Esquizofrenia/tratamento farmacológico , Feminino , Antipsicóticos/uso terapêutico , Antipsicóticos/efeitos adversos , Estudos Transversais , Adulto , Pessoa de Meia-Idade , China , Psicologia do Esquizofrênico , Doença Crônica , Disfunção Cognitiva/psicologia , Ansiedade/psicologia , Depressão/psicologiaRESUMO
BACKGROUND: The impact of exercise dosages based on American College of Sports Medicine(ACSM) recommendations on lipid metabolism in patients after PCI remains unclear. This study conducted a meta-analysis of reported exercise dosages from the literature to address this knowledge gap. METHODS: A comprehensive search of databases was conducted to identify eligible randomized controlled studies of exercise interventions in patients after PCI, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Based on the recommended exercise dosages from ACSM for patients with coronary heart disease, exercise doses in the literature that met the inclusion criteria were categorized into groups that were highly compliant with ACSM recommendations and those with low or uncertain ACSM recommendations. The topic was the effect of exercise dose on lipid metabolism in post-PCI patients. This was assessed using standardized mean difference (SMD) and 95% confidence intervals (95% CI) for changes in triglycerides, total cholesterol, LDL, and HDL. RESULTS: This systematic review included 10 randomized controlled studies. The subgroup analysis revealed statistically significant differences in the high compliance with ACSM recommendations group for triglycerides [SMD=-0.33 (95% CI -0.62, -0.05)], total cholesterol [SMD=-0.55 (95% CI -0.97, -0.13)], low-density lipoprotein [SMD=-0.31 (95% CI -0.49, -0.13)], high-density lipoprotein [SMD = 0.23 (95% CI 0.01, 0.46)], and body mass index [SMD=-0.52 (95% CI -0.87, -0.17)]. Compared to the low or uncertain compliance with ACSM recommendations group, the high compliance group exhibited significant differences in improving TC levels (-0.55(H) vs. -0.46(L)), HDL levels (0.23(H) vs. 0.22(L)), and BMI (-0.52(H) vs. -0.34(L)). CONCLUSIONS: This study supports that high compliance with ACSM-recommended exercise dosages has significant impacts on improving TC levels, HDL levels, and BMI. However, no advantage was observed for TG or LDL levels.
Assuntos
Exercício Físico , Metabolismo dos Lipídeos , Intervenção Coronária Percutânea , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos , Humanos , Exercício Físico/fisiologia , Triglicerídeos/sangue , Medicina Esportiva , HDL-Colesterol/sangue , Colesterol/sangue , Masculino , LDL-Colesterol/sangue , Terapia por ExercícioRESUMO
AIMS: Vessel co-option is responsible for tumor resistance to antiangiogenic therapies (AATs) in patients with colorectal cancer liver metastasis (CRCLM). However, the mechanisms underlying vessel co-option remain largely unknown. Herein, we investigated the roles of a novel lncRNA SYTL5-OT4 and Alanine-Serine-Cysteine Transporter 2 (ASCT2) in vessel co-option-mediated AAT resistance. METHODS: SYTL5-OT4 was identified by RNA-sequencing and verified by RT-qPCR and RNA fluorescence in situ hybridization assays. The effects of SYTL5-OT4 and ASCT2 on tumor cells were investigated by gain- and loss-of-function experiments, and those of SYTL5-OT4 on ASCT2 expression were analyzed by RNA immunoprecipitation and co-immunoprecipitation assays. The roles of SYTL5-OT4 and ASCT2 in vessel co-option were detected by histological, immunohistochemical, and immunofluorescence analyses. RESULTS: The expression of SYTL5-OT4 and ASCT2 was higher in patients with AAT-resistant CRCLM. SYTL5-OT4 enhanced the expression of ASCT2 by inhibiting its autophagic degradation. SYTL5-OT4 and ASCT2 promoted vessel co-option by increasing the proliferation and epithelial-mesenchymal transition of tumor cells. Combination therapy of ASCT2 inhibitor and antiangiogenic agents overcame vessel co-option-mediated AAT resistance in CRCLM. CONCLUSION: This study highlights the crucial roles of lncRNA and glutamine metabolism in vessel co-option and provides a potential therapeutic strategy for patients with AAT-resistant CRCLM.
Assuntos
Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Alanina , Proteínas de Transporte , Linhagem Celular Tumoral , Cisteína , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteínas de Membrana , Proteínas de Membrana Transportadoras , RNA Longo não Codificante/genética , SerinaRESUMO
BACKGROUND AND AIM: Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.
Assuntos
Melanoma Experimental , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Furanos/farmacologia , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Autofagia/efeitos dos fármacos , SesquiterpenosRESUMO
The focus of this study is to develop a high-performance anode material for microbial fuel cells (MFCs). PEDOT:PSS and nitrogen-modified MXene were combined to create a hydrogel composite material called PPNM, which was drop-cast onto carbon felt (CF) as the MFCs anode. The PPNM exhibited a higher peak power density of 4.78 W m-2, an increase of 332% compared to the CF anode. It is worth noting that the PPNM Hydrogel maintains its rough and porous structure, providing favorable sites for bacterial colonization. The introduction of N-MXene has improved the electrochemical performance of the hydrogel, particularly impacting the mediated electron transfer process. Microbial community analysis revealed the presence of more electrochemically active species on the PPNM anode. These findings highlight the potential of PPNM hydrogel and pave the way for similar strategies in achieving high-performance anodes in MFCs.
Assuntos
Fontes de Energia Bioelétrica , Hidrogéis , Elétrons , Fontes de Energia Bioelétrica/microbiologia , Carbono/química , EletrodosRESUMO
Organophosphate esters (OPEs) serve as significant flame retardants and plasticizers in various petrochemical downstream products. The petrochemical industry could be a potential source of atmospheric OPEs, but their emissions from this industry are poorly understood. The present study revealed the spatial variation, emission, and atmospheric transport of traditional and novel OPEs (TOPEs and NOPEs, respectively) in atmospheric particulate matter (PM) across Hainan and Guangdong petrochemical complexes (HNPC and GDPC, respectively) in southern China. The total concentrations of TOPEs ranged from 232 to 46,002 pg/m3 and from 200 to 20,347 pg/m3 in the HNPC and GDPC, respectively, which were substantially higher than those of NOPEs (HNPC: 23.5-147 pg/m3, GDPC: 13.9-465 pg/m3). Enterprises involved in the production of downstream petrochemical products presented relatively high concentrations of OPEs, indicating evident emissions of these pollutants in the petrochemical industry. The correlations of PM-bound OPEs in the atmosphere are determined mainly by their coaddition to industrial products or their coexistence in technical mixtures. The annual emissions of TOPEs and NOPEs in the HNPC were 42.6 kg and 0.34 kg, respectively, and those in the GDPC were 116 kg and 1.85 kg, respectively. OPEs from the HNPC can reach Vietnam, Cambodia, and Guangxi Province, China, and those from the GDPC can reach Guangxi Province and Hunan Province via atmospheric transmission after 24 h of emission. The OPE concentrations reaching the receptor regions were generally less than 3.20 pg/m3. Risk assessment revealed that OPE inhalation exposure on two petrochemical complexes likely poses minor risks for people living in the study areas, but the risk resulting from two chlorinated OPEs should be noted since they are close to the threshold values. This study has implications for enhancing control measures for OPE emissions to reduce health risks related to the petrochemical industry.