RESUMO
Optical path length (OPL) noise resulting from stray light significantly constrains interferometry displacement measurements in the low-frequency band. This paper presents an analytical model considering the presence of stray light in heterodyne laser interferometers. Due to the cyclic nonlinear coupling effect, there will be some special OPLs of stray light, minimizing the frequency-mixing impact to zero. Consequently, we propose a noise suppression scheme that locks the OPL of stray light at the zero coupling point. Therefore, we significantly enhanced the interference displacement measurement noise within the low-frequency band. Experimental results show that the interferometer achieves a displacement noise level lower than 6 pm/Hz1/2 covering 1 mHz.