Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Am J Hum Genet ; 110(4): 575-591, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028392

RESUMO

Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Genótipo , Bancos de Espécimes Biológicos , Reino Unido , Polimorfismo de Nucleotídeo Único/genética
2.
Am J Hum Genet ; 110(11): 1950-1958, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883979

RESUMO

As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.


Assuntos
Neoplasias da Mama , Cardiomiopatias , Adulto , Humanos , Feminino , Estudos Prospectivos , Aceitação pelo Paciente de Cuidados de Saúde , Arritmias Cardíacas , Neoplasias da Mama/genética , Cardiomiopatias/genética
3.
Am J Hum Genet ; 109(9): 1591-1604, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998640

RESUMO

Diagnosis for rare genetic diseases often relies on phenotype-driven methods, which hinge on the accuracy and completeness of the rare disease phenotypes in the underlying annotation knowledgebase. Existing knowledgebases are often manually curated with additional annotations found in published case reports. Despite their potential, real-world data such as electronic health records (EHRs) have not been fully exploited to derive rare disease annotations. Here, we present open annotation for rare diseases (OARD), a real-world-data-derived resource with annotation for rare-disease-related phenotypes. This resource is derived from the EHRs of two academic health institutions containing more than 10 million individuals spanning wide age ranges and different disease subgroups. By leveraging ontology mapping and advanced natural-language-processing (NLP) methods, OARD automatically and efficiently extracts concepts for both rare diseases and their phenotypic traits from billing codes and lab tests as well as over 100 million clinical narratives. The rare disease prevalence derived by OARD is highly correlated with those annotated in the original rare disease knowledgebase. By performing association analysis, we identified more than 1 million novel disease-phenotype association pairs that were previously missed by human annotation, and >60% were confirmed true associations via manual review of a list of sampled pairs. Compared to the manual curated annotation, OARD is 100% data driven and its pipeline can be shared across different institutions. By supporting privacy-preserving sharing of aggregated summary statistics, such as term frequencies and disease-phenotype associations, it fills an important gap to facilitate data-driven research in the rare disease community.


Assuntos
Processamento de Linguagem Natural , Doenças Raras , Registros Eletrônicos de Saúde , Humanos , Fenótipo , Doenças Raras/genética
4.
Br J Dermatol ; 190(6): 789-797, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38330217

RESUMO

The field of dermatology is experiencing the rapid deployment of artificial intelligence (AI), from mobile applications (apps) for skin cancer detection to large language models like ChatGPT that can answer generalist or specialist questions about skin diagnoses. With these new applications, ethical concerns have emerged. In this scoping review, we aimed to identify the applications of AI to the field of dermatology and to understand their ethical implications. We used a multifaceted search approach, searching PubMed, MEDLINE, Cochrane Library and Google Scholar for primary literature, following the PRISMA Extension for Scoping Reviews guidance. Our advanced query included terms related to dermatology, AI and ethical considerations. Our search yielded 202 papers. After initial screening, 68 studies were included. Thirty-two were related to clinical image analysis and raised ethical concerns for misdiagnosis, data security, privacy violations and replacement of dermatologist jobs. Seventeen discussed limited skin of colour representation in datasets leading to potential misdiagnosis in the general population. Nine articles about teledermatology raised ethical concerns, including the exacerbation of health disparities, lack of standardized regulations, informed consent for AI use and privacy challenges. Seven addressed inaccuracies in the responses of large language models. Seven examined attitudes toward and trust in AI, with most patients requesting supplemental assessment by a physician to ensure reliability and accountability. Benefits of AI integration into clinical practice include increased patient access, improved clinical decision-making, efficiency and many others. However, safeguards must be put in place to ensure the ethical application of AI.


The use of artificial intelligence (AI) in dermatology is rapidly increasing, with applications in dermatopathology, medical dermatology, cutaneous surgery, microscopy/spectroscopy and the identification of prognostic biomarkers (characteristics that provide information on likely patient health outcomes). However, with the rise of AI in dermatology, ethical concerns have emerged. We reviewed the existing literature to identify applications of AI in the field of dermatology and understand the ethical implications. Our search initially identified 202 papers, and after we went through them (screening), 68 were included in our review. We found that ethical concerns are related to the use of AI in the areas of clinical image analysis, teledermatology, natural language processing models, privacy, skin of colour representation, and patient and provider attitudes toward AI. We identified nine ethical principles to facilitate the safe use of AI in dermatology. These ethical principles include fairness, inclusivity, transparency, accountability, security, privacy, reliability, informed consent and conflict of interest. Although there are many benefits of integrating AI into clinical practice, our findings highlight how safeguards must be put in place to reduce rising ethical concerns.


Assuntos
Inteligência Artificial , Dermatologia , Humanos , Inteligência Artificial/ética , Dermatologia/ética , Dermatologia/métodos , Telemedicina/ética , Consentimento Livre e Esclarecido/ética , Confidencialidade/ética , Erros de Diagnóstico/ética , Erros de Diagnóstico/prevenção & controle , Segurança Computacional/ética , Dermatopatias/diagnóstico , Dermatopatias/terapia , Aplicativos Móveis/ética
5.
J Biomed Inform ; 155: 104659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777085

RESUMO

OBJECTIVE: This study aims to promote interoperability in precision medicine and translational research by aligning the Observational Medical Outcomes Partnership (OMOP) and Phenopackets data models. Phenopackets is an expert knowledge-driven schema designed to facilitate the storage and exchange of multimodal patient data, and support downstream analysis. The first goal of this paper is to explore model alignment by characterizing the common data models using a newly developed data transformation process and evaluation method. Second, using OMOP normalized clinical data, we evaluate the mapping of real-world patient data to Phenopackets. We evaluate the suitability of Phenopackets as a patient data representation for real-world clinical cases. METHODS: We identified mappings between OMOP and Phenopackets and applied them to a real patient dataset to assess the transformation's success. We analyzed gaps between the models and identified key considerations for transforming data between them. Further, to improve ambiguous alignment, we incorporated Unified Medical Language System (UMLS) semantic type-based filtering to direct individual concepts to their most appropriate domain and conducted a domain-expert evaluation of the mapping's clinical utility. RESULTS: The OMOP to Phenopacket transformation pipeline was executed for 1,000 Alzheimer's disease patients and successfully mapped all required entities. However, due to missing values in OMOP for required Phenopacket attributes, 10.2 % of records were lost. The use of UMLS-semantic type filtering for ambiguous alignment of individual concepts resulted in 96 % agreement with clinical thinking, increased from 68 % when mapping exclusively by domain correspondence. CONCLUSION: This study presents a pipeline to transform data from OMOP to Phenopackets. We identified considerations for the transformation to ensure data quality, handling restrictions for successful Phenopacket validation and discrepant data formats. We identified unmappable Phenopacket attributes that focus on specialty use cases, such as genomics or oncology, which OMOP does not currently support. We introduce UMLS semantic type filtering to resolve ambiguous alignment to Phenopacket entities to be most appropriate for real-world interpretation. We provide a systematic approach to align OMOP and Phenopackets schemas. Our work facilitates future use of Phenopackets in clinical applications by addressing key barriers to interoperability when deriving a Phenopacket from real-world patient data.


Assuntos
Unified Medical Language System , Humanos , Semântica , Registros Eletrônicos de Saúde , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica , Informática Médica/métodos , Processamento de Linguagem Natural , Doença de Alzheimer
6.
J Biomed Inform ; 156: 104663, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838949

RESUMO

OBJECTIVE: This study aims to investigate the association between social determinants of health (SDoH) and clinical research recruitment outcomes and recommends evidence-based strategies to enhance equity. MATERIALS AND METHODS: Data were collected from the internal clinical study manager database, clinical data warehouse, and clinical research registry. Study characteristics (e.g., study phase) and sociodemographic information were extracted. Median neighborhood income, distance from the study location, and Area Deprivation Index (ADI) were calculated. Mixed effect generalized regression was used for clustering effects and false discovery rate adjustment for multiple testing. A stratified analysis was performed to examine the impact in distinct medical departments. RESULTS: The study sample consisted of 3,962 individuals, with a mean age of 61.5 years, 53.6 % male, 54.2 % White, and 49.1 % non-Hispanic or Latino. Study characteristics revealed a variety of protocols across different departments, with cardiology having the highest percentage of participants (46.4 %). Industry funding was the most common (74.5 %), and digital advertising and personal outreach were the main recruitment methods (58.9 % and 90.8 %). DISCUSSION: The analysis demonstrated significant associations between participant characteristics and research participation, including biological sex, age, ethnicity, and language. The stratified analysis revealed other significant associations for recruitment strategies. SDoH is crucial to clinical research recruitment, and this study presents evidence-based solutions for equity and inclusivity. Researchers can tailor recruitment strategies to overcome barriers and increase participant diversity by identifying participant characteristics and research involvement status. CONCLUSION: The findings highlight the relevance of clinical research inequities and equitable representation of historically underrepresented populations. We need to improve recruitment strategies to promote diversity and inclusivity in research.

7.
J Biomed Inform ; 154: 104649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697494

RESUMO

OBJECTIVE: Automated identification of eligible patients is a bottleneck of clinical research. We propose Criteria2Query (C2Q) 3.0, a system that leverages GPT-4 for the semi-automatic transformation of clinical trial eligibility criteria text into executable clinical database queries. MATERIALS AND METHODS: C2Q 3.0 integrated three GPT-4 prompts for concept extraction, SQL query generation, and reasoning. Each prompt was designed and evaluated separately. The concept extraction prompt was benchmarked against manual annotations from 20 clinical trials by two evaluators, who later also measured SQL generation accuracy and identified errors in GPT-generated SQL queries from 5 clinical trials. The reasoning prompt was assessed by three evaluators on four metrics: readability, correctness, coherence, and usefulness, using corrected SQL queries and an open-ended feedback questionnaire. RESULTS: Out of 518 concepts from 20 clinical trials, GPT-4 achieved an F1-score of 0.891 in concept extraction. For SQL generation, 29 errors spanning seven categories were detected, with logic errors being the most common (n = 10; 34.48 %). Reasoning evaluations yielded a high coherence rating, with the mean score being 4.70 but relatively lower readability, with a mean of 3.95. Mean scores of correctness and usefulness were identified as 3.97 and 4.37, respectively. CONCLUSION: GPT-4 significantly improves the accuracy of extracting clinical trial eligibility criteria concepts in C2Q 3.0. Continued research is warranted to ensure the reliability of large language models.


Assuntos
Ensaios Clínicos como Assunto , Humanos , Processamento de Linguagem Natural , Software , Seleção de Pacientes
8.
J Biomed Inform ; 153: 104640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608915

RESUMO

Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence. The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information. Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task. However, developing accountable, fair, and inclusive models remains a complicated undertaking. In this perspective, we discuss the trustworthiness of generative AI in the context of automated summarization of medical evidence.


Assuntos
Inteligência Artificial , Medicina Baseada em Evidências , Humanos , Confiança , Processamento de Linguagem Natural
9.
BMC Med Inform Decis Mak ; 22(Suppl 2): 348, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433189

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations of SLE for organ damage and mortality, is a key component of lupus classification criteria. Accurately identifying lupus nephritis in electronic health records (EHRs) would therefore benefit large cohort observational studies and clinical trials where characterization of the patient population is critical for recruitment, study design, and analysis. Lupus nephritis can be recognized through procedure codes and structured data, such as laboratory tests. However, other critical information documenting lupus nephritis, such as histologic reports from kidney biopsies and prior medical history narratives, require sophisticated text processing to mine information from pathology reports and clinical notes. In this study, we developed algorithms to identify lupus nephritis with and without natural language processing (NLP) using EHR data from the Northwestern Medicine Enterprise Data Warehouse (NMEDW). METHODS: We developed five algorithms: a rule-based algorithm using only structured data (baseline algorithm) and four algorithms using different NLP models. The first NLP model applied simple regular expression for keywords search combined with structured data. The other three NLP models were based on regularized logistic regression and used different sets of features including positive mention of concept unique identifiers (CUIs), number of appearances of CUIs, and a mixture of three components (i.e. a curated list of CUIs, regular expression concepts, structured data) respectively. The baseline algorithm and the best performing NLP algorithm were externally validated on a dataset from Vanderbilt University Medical Center (VUMC). RESULTS: Our best performing NLP model incorporated features from both structured data, regular expression concepts, and mapped concept unique identifiers (CUIs) and showed improved F measure in both the NMEDW (0.41 vs 0.79) and VUMC (0.52 vs 0.93) datasets compared to the baseline lupus nephritis algorithm. CONCLUSION: Our NLP MetaMap mixed model improved the F-measure greatly compared to the structured data only algorithm in both internal and external validation datasets. The NLP algorithms can serve as powerful tools to accurately identify lupus nephritis phenotype in EHR for clinical research and better targeted therapies.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Fenótipo , Doenças Raras
10.
J Am Soc Nephrol ; 34(4): 607-618, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302597

RESUMO

SIGNIFICANCE STATEMENT: Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis. BACKGROUND: Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility. METHODS: We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort. RESULTS: We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk. CONCLUSION: Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients.


Assuntos
Longevidade , Insuficiência Renal Crônica , Humanos , Estudos de Coortes , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações , Genômica , Progressão da Doença , Fatores de Risco
11.
Circulation ; 145(12): 877-891, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-34930020

RESUMO

BACKGROUND: Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results is unclear. In addition, the majority of discovered variants are currently classified as variants of uncertain significance, limiting clinical actionability. METHODS: The eMERGE-III study (Electronic Medical Records and Genomics Phase III) is a multicenter prospective cohort that included 21 846 participants without previous indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with electronic health record-derived phenotypes and follow-up clinical examination. Selected variants of uncertain significance (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. RESULTS: As previously reported, 3.0% of participants had P/LP variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared with noncarriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their electronic health records. Fifty-four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long-QT syndrome), and 12 of these 19 diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance, we reclassified 11 variants: 3 to likely benign and 8 to P/LP. CONCLUSIONS: Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As the genomes of large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, electronic health record phenotypes, and in vitro functional studies. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier; NCT03394859.


Assuntos
Arritmias Cardíacas , Testes Genéticos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Genômica , Células HEK293 , Humanos , Fenótipo , Estudos Prospectivos
12.
J Biomed Inform ; 142: 104375, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37141977

RESUMO

OBJECTIVE: Feasible, safe, and inclusive eligibility criteria are crucial to successful clinical research recruitment. Existing expert-centered methods for eligibility criteria selection may not be representative of real-world populations. This paper presents a novel model called OPTEC (OPTimal Eligibility Criteria) based on the Multiple Attribute Decision Making method boosted by an efficient greedy algorithm. METHODS: It systematically identifies the optimal criteria combination for a given medical condition with the optimal tradeoff among feasibility, patient safety, and cohort diversity. The model offers flexibility in attribute configurations and generalizability to various clinical domains. The model was evaluated on two clinical domains (i.e., Alzheimer's disease and Neoplasm of pancreas) using two datasets (i.e., MIMIC-III dataset and NewYork-Presbyterian/Columbia University Irving Medical Center (NYP/CUIMC) database). RESULTS: We simulated the process of automatically optimizing eligibility criteria according to user-specified prioritization preferences and generated recommendations based on the top-ranked criteria combination accordingly (top 0.41-2.75%) with OPTEC. Harnessing the power of the model, we designed an interactive criteria recommendation system and conducted a case study with an experienced clinical researcher using the think-aloud protocol. CONCLUSIONS: The results demonstrated that OPTEC could be used to recommend feasible eligibility criteria combinations, and to provide actionable recommendations for clinical study designers to construct a feasible, safe, and diverse cohort definition during early study design.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Seleção de Pacientes , Definição da Elegibilidade , Pesquisadores
13.
Genet Epidemiol ; 45(1): 4-15, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964493

RESUMO

Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.


Assuntos
Estenose das Carótidas , Estudo de Associação Genômica Ampla , Registros Eletrônicos de Saúde , Predisposição Genética para Doença , Genômica , Humanos , Lipoproteína(a)/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
14.
BMC Genomics ; 23(1): 385, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590255

RESUMO

BACKGROUND: As genomic sequencing moves closer to clinical implementation, there has been an increasing acceptance of returning incidental findings to research participants and patients for mutations in highly penetrant, medically actionable genes. A curated list of genes has been recommended by the American College of Medical Genetics and Genomics (ACMG) for return of incidental findings. However, the pleiotropic effects of these genes are not fully known. Such effects could complicate genetic counseling when returning incidental findings. In particular, there has been no systematic evaluation of psychiatric manifestations associated with rare variation in these genes. RESULTS: Here, we leveraged a targeted sequence panel and real-world electronic health records from the eMERGE network to assess the burden of rare variation in the ACMG-56 genes and two psychiatric-associated genes (CACNA1C  and TCF4) across common mental health conditions in 15,181 individuals of European descent. As a positive control, we showed that this approach replicated the established association between rare mutations in LDLR and hypercholesterolemia with no visible inflation from population stratification. However, we did not identify any genes significantly enriched with rare deleterious variants that confer risk for common psychiatric disorders after correction for multiple testing. Suggestive associations were observed between depression and rare coding variation in PTEN (P = 1.5 × 10-4), LDLR (P = 3.6 × 10-4), and CACNA1S (P = 5.8 × 10-4). We also observed nominal associations between rare variants in KCNQ1 and substance use disorders (P = 2.4 × 10-4), and APOB and tobacco use disorder (P = 1.1 × 10-3). CONCLUSIONS: Our results do not support an association between psychiatric disorders and incidental findings in medically actionable gene mutations, but power was limited with the available sample sizes. Given the phenotypic and genetic complexity of psychiatric phenotypes, future work will require a much larger sequencing dataset to determine whether incidental findings in these genes have implications for risk of psychopathology.


Assuntos
Exoma , Testes Genéticos , Testes Genéticos/métodos , Variação Genética , Genômica/métodos , Humanos , Mutação , Fenótipo
15.
N Engl J Med ; 380(2): 142-151, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30586318

RESUMO

BACKGROUND: Exome sequencing is emerging as a first-line diagnostic method in some clinical disciplines, but its usefulness has yet to be examined for most constitutional disorders in adults, including chronic kidney disease, which affects more than 1 in 10 persons globally. METHODS: We conducted exome sequencing and diagnostic analysis in two cohorts totaling 3315 patients with chronic kidney disease. We assessed the diagnostic yield and, among the patients for whom detailed clinical data were available, the clinical implications of diagnostic and other medically relevant findings. RESULTS: In all, 3037 patients (91.6%) were over 21 years of age, and 1179 (35.6%) were of self-identified non-European ancestry. We detected diagnostic variants in 307 of the 3315 patients (9.3%), encompassing 66 different monogenic disorders. Of the disorders detected, 39 (59%) were found in only a single patient. Diagnostic variants were detected across all clinically defined categories, including congenital or cystic renal disease (127 of 531 patients [23.9%]) and nephropathy of unknown origin (48 of 281 patients [17.1%]). Of the 2187 patients assessed, 34 (1.6%) had genetic findings for medically actionable disorders that, although unrelated to their nephropathy, would also lead to subspecialty referral and inform renal management. CONCLUSIONS: Exome sequencing in a combined cohort of more than 3000 patients with chronic kidney disease yielded a genetic diagnosis in just under 10% of cases. (Funded by the National Institutes of Health and others.).


Assuntos
Exoma , Predisposição Genética para Doença , Mutação , Insuficiência Renal Crônica/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Estudos de Coortes , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/etnologia , Adulto Jovem
16.
J Biomed Inform ; 135: 104235, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36283581

RESUMO

OBJECTIVE: The free-text Condition data field in the ClinicalTrials.gov is not amenable to computational processes for retrieving, aggregating and visualizing clinical studies by condition categories. This paper contributes a method for automated ontology-based categorization of clinical studies by their conditions. MATERIALS AND METHODS: Our method first maps text entries in ClinicalTrials.gov's Condition field to standard condition concepts in the OMOP Common Data Model by using SNOMED CT as a reference ontology and using Usagi for concept normalization, followed by hierarchical traversal of the SNOMED ontology for concept expansion, ontology-driven condition categorization, and visualization. We compared the accuracy of this method to that of the MeSH-based method. RESULTS: We reviewed the 4,506 studies on Vivli.org categorized by our method. Condition terms of 4,501 (99.89%) studies were successfully mapped to SNOMED CT concepts, and with a minimum concept mapping score threshold, 4,428 (98.27%) studies were categorized into 31 predefined categories. When validating with manual categorization results on a random sample of 300 studies, our method achieved an estimated categorization accuracy of 95.7%, while the MeSH-based method had an accuracy of 85.0%. CONCLUSION: We showed that categorizing clinical studies using their Condition terms with referencing to SNOMED CT achieved a better accuracy and coverage than using MeSH terms. The proposed ontology-driven condition categorization was useful to create accurate clinical study categorization that enables clinical researchers to aggregate evidence from a large number of clinical studies.


Assuntos
Medical Subject Headings , Systematized Nomenclature of Medicine , Visualização de Dados
17.
J Biomed Inform ; 127: 104032, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35189334

RESUMO

OBJECTIVE: To present an approach on using electronic health record (EHR) data that assesses how different eligibility criteria, either individually or in combination, can impact patient count and safety (exemplified by all-cause hospitalization risk) and further assist with criteria selection for prospective clinical trials. MATERIALS AND METHODS: Trials in three disease domains - relapsed/refractory (r/r) lymphoma/leukemia; hepatitis C virus (HCV); stages 3 and 4 chronic kidney disease (CKD) - were analyzed as case studies for this approach. For each disease domain, criteria were identified and all criteria combinations were used to create EHR cohorts. Per combination, two values were derived: (1) number of eligible patients meeting the selected criteria; (2) hospitalization risk, measured as the hazard ratio between those that qualified and those that did not. From these values, k-means clustering was applied to derive which criteria combinations maximized patient counts but minimized hospitalization risk. RESULTS: Criteria combinations that reduced hospitalization risk without substantial reductions on patient counts were as follows: for r/r lymphoma/leukemia (23 trials; 9 criteria; 623 patients), applying no infection and adequate absolute neutrophil count while forgoing no prior malignancy; for HCV (15; 7; 751), applying no human immunodeficiency virus and no hepatocellular carcinoma while forgoing no decompensated liver disease/cirrhosis; for CKD (10; 9; 23893), applying no congestive heart failure. CONCLUSIONS: Within each disease domain, the more drastic effects were generally driven by a few criteria. Similar criteria across different disease domains introduce different changes. Although results are contingent on the trial sample and the EHR data used, this approach demonstrates how EHR data can inform the impact on safety and available patients when exploring different criteria combinations for designing clinical trials.


Assuntos
Registros Eletrônicos de Saúde , Infecções por HIV , Definição da Elegibilidade , Humanos , Seleção de Pacientes , Estudos Prospectivos
18.
J Biomed Inform ; 135: 104227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36257483

RESUMO

Although individually rare, collectively more than 7,000 rare diseases affect about 10% of patients. Each of the rare diseases impacts the quality of life for patients and their families, and incurs significant societal costs. The low prevalence of each rare disease causes formidable challenges in accurately diagnosing and caring for these patients and engaging participants in research to advance treatments. Deep learning has advanced many scientific fields and has been applied to many healthcare tasks. This study reviewed the current uses of deep learning to advance rare disease research. Among the 332 reviewed articles, we found that deep learning has been actively used for rare neoplastic diseases (250/332), followed by rare genetic diseases (170/332) and rare neurological diseases (127/332). Convolutional neural networks (307/332) were the most frequently used deep learning architecture, presumably because image data were the most commonly available data type in rare disease research. Diagnosis is the main focus of rare disease research using deep learning (263/332). We summarized the challenges and future research directions for leveraging deep learning to advance rare disease research.


Assuntos
Aprendizado Profundo , Doenças do Sistema Nervoso , Humanos , Doenças Raras , Qualidade de Vida , Redes Neurais de Computação
20.
BMC Med Inform Decis Mak ; 22(Suppl 3): 235, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068551

RESUMO

BACKGROUND: Clinical trial protocols are the foundation for advancing medical sciences, however, the extraction of accurate and meaningful information from the original clinical trials is very challenging due to the complex and unstructured texts of such documents. Named entity recognition (NER) is a fundamental and necessary step to process and standardize the unstructured text in clinical trials using Natural Language Processing (NLP) techniques. METHODS: In this study we fine-tuned pre-trained language models to support the NER task on clinical trial eligibility criteria. We systematically investigated four pre-trained contextual embedding models for the biomedical domain (i.e., BioBERT, BlueBERT, PubMedBERT, and SciBERT) and two models for the open domains (BERT and SpanBERT), for NER tasks using three existing clinical trial eligibility criteria corpora. In addition, we also investigated the feasibility of data augmentation approaches and evaluated their performance. RESULTS: Our evaluation results using tenfold cross-validation show that domain-specific transformer models achieved better performance than the general transformer models, with the best performance obtained by the PubMedBERT model (F1-scores of 0.715, 0.836, and 0.622 for the three corpora respectively). The data augmentation results show that it is feasible to leverage additional corpora to improve NER performance. CONCLUSIONS: Findings from this study not only demonstrate the importance of contextual embeddings trained from domain-specific corpora, but also shed lights on the benefits of leveraging multiple data sources for the challenging NER task in clinical trial eligibility criteria text.


Assuntos
Definição da Elegibilidade , Nomes , Ensaios Clínicos como Assunto , Humanos , Armazenamento e Recuperação da Informação , Idioma , Medicina , Processamento de Linguagem Natural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA