Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Mar Drugs ; 22(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39330268

RESUMO

This study investigated the effects of herbicide exposure on Navicula sp. (MASCC-0035) algae, focusing on growth density, chlorophyll content, antioxidant system, and lipid metabolism. Navicula cultures were exposed to different concentrations of atrazine (ATZ), glyphosate (Gly), and acetochlor (ACT) for 96 h. Results showed a significant decrease in cell numbers, with higher herbicide concentrations having the most noticeable impacts. For instance, Gly-G2 had reduced cell populations by 21.00% at 96 h. Chlorophyll content varied, with Gly having a greater impact on chlorophyll a compared to ATZ and ACT. Herbicide exposure also affected the antioxidant system, altering levels of soluble sugar, soluble protein, and reactive oxygen species (ROS). Higher herbicide rates increased soluble sugar content (e.g., ATZ, Gly, and ACT-G2 had increased by 14.03%, 19.88%, and 19.83%, respectively, at 72 h) but decreased soluble protein content, notably in Gly-G2 by 11.40%, indicating cellular stress. Lipid metabolism analysis revealed complex responses, with changes in free proline, fatty acids, and lipase content, each herbicide exerting distinct effects. These findings highlight the multifaceted impacts of herbicide exposure on Navicula algae, emphasizing the need for further research to understand ecological implications and develop mitigation strategies for aquatic ecosystems.


Assuntos
Antioxidantes , Clorofila , Glicina , Glifosato , Herbicidas , Metabolismo dos Lipídeos , Herbicidas/toxicidade , Clorofila/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Glicina/análogos & derivados , Glicina/toxicidade , Atrazina/toxicidade , Poluentes Químicos da Água/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Toluidinas
2.
Environ Res ; 213: 113614, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35710023

RESUMO

In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Poluentes Químicos da Água/análise
3.
Mar Pollut Bull ; 174: 113278, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995886

RESUMO

Human activities have changed the global concentration of potentially toxic elements (PTEs) and significantly altered the marine ecosystem. Little is known about the concentrations of these PTEs around Hainan Island in China, or their distribution and human health risks. Understanding the variability of PTEs in marine sediments and how they accumulate is important not only for biodiversity and ecological conservation, but also for management of aquatic natural resources and human health risk assessments. This study showed that the concentrations of six PTEs (Cd, Cu, Zn, As, Pb, and Hg), sampled in nine different cities, were linked to human activities. In order to understand the ecological risks associated with PTE pollution, we calculated the contamination factor (CF), enrichment factor (EF), pollution load index (PLI), and geo-accumulation index (Igeo) of each element in each city. These indicators suggest that the pollution of Cd and Zn in the sediments of these cities is higher than that of the other PTEs. We also carried out a human health risk assessment which demonstrated the carcinogenic effects of Zn on children and adults in ChengMai, while Pb showed non-carcinogenic effects at all the studied sites, suggesting that Zn pollution in the sediments of ChengMai may pose human health risks. We would therefore advise that follow-up studies endeavor to monitor the levels of PTEs in the flora and fauna of these cities.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , China , Ecossistema , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA