Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neurobiol Dis ; 190: 106373, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072165

RESUMO

In Alzheimer's disease (AD) research, cerebrospinal fluid (CSF) Amyloid beta (Aß), Tau and pTau are the most accepted and well validated biomarkers. Several methods and platforms exist to measure those biomarkers, leading to challenges in combining data across studies. Thus, there is a need to identify methods that harmonize and standardize these values. We used a Z-score based approach to harmonize CSF and amyloid imaging data from multiple cohorts and compared GWAS results using this approach with currently accepted methods. We also used a generalized mixture model to calculate the threshold for biomarker-positivity. Based on our findings, our normalization approach performed as well as meta-analysis and did not lead to any spurious results. In terms of dichotomization, cutoffs calculated with this approach were very similar to those reported previously. These findings show that the Z-score based harmonization approach can be applied to heterogeneous platforms and provides biomarker cut-offs consistent with the classical approaches without requiring any additional data.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/genética , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
2.
medRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559166

RESUMO

In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.

3.
Res Sq ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883718

RESUMO

Alzheimer Disease (AD) is a highly polygenic disease that presents with relatively earlier onset (≤70yo; EOAD) in about 5% of cases. Around 90% of these EOAD cases remain unexplained by pathogenic mutations. Using data from EOAD cases and controls, we performed a genome-wide association study (GWAS) and trans-ancestry meta-analysis on non-Hispanic Whites (NHW, NCase=6,282, NControl=13,386), African Americans (AA NCase=782, NControl=3,663) and East Asians (NCase=375, NControl=838 CO). We identified eight novel significant loci: six in the ancestry-specific analyses and two in the trans-ancestry analysis. By integrating gene-based analysis, eQTL, pQTL and functional annotations, we nominate four novel genes that are involved in microglia activation, glutamate production, and signaling pathways. These results indicate that EOAD, although sharing many genes with LOAD, harbors unique genes and pathways that could be used to create better prediction models or target identification for this type of AD.

4.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924431

RESUMO

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Cloridrato de Atomoxetina , Proteômica , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Proteômica/métodos , Apolipoproteína E4/genética , Cloridrato de Atomoxetina/uso terapêutico , Cloridrato de Atomoxetina/farmacologia , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Masculino , Idoso , Feminino , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo
5.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410465

RESUMO

Changes in Amyloid-ß (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).

6.
medRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260583

RESUMO

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

7.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172904

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudo de Associação Genômica Ampla , Microglia/patologia , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
8.
NPJ Parkinsons Dis ; 9(1): 107, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422510

RESUMO

Common and rare variants in the LRRK2 locus are associated with Parkinson's disease (PD) risk, but the downstream effects of these variants on protein levels remain unknown. We performed comprehensive proteogenomic analyses using the largest aptamer-based CSF proteomics study to date (7006 aptamers (6138 unique proteins) in 3107 individuals). The dataset comprised six different and independent cohorts (five using the SomaScan7K (ADNI, DIAN, MAP, Barcelona-1 (Pau), and Fundació ACE (Ruiz)) and the PPMI cohort using the SomaScan5K panel). We identified eleven independent SNPs in the LRRK2 locus associated with the levels of 25 proteins as well as PD risk. Of these, only eleven proteins have been previously associated with PD risk (e.g., GRN or GPNMB). Proteome-wide association study (PWAS) analyses suggested that the levels of ten of those proteins were genetically correlated with PD risk, and seven were validated in the PPMI cohort. Mendelian randomization analyses identified GPNMB, LCT, and CD68 causal for PD and nominate one more (ITGB2). These 25 proteins were enriched for microglia-specific proteins and trafficking pathways (both lysosome and intracellular). This study not only demonstrates that protein phenome-wide association studies (PheWAS) and trans-protein quantitative trail loci (pQTL) analyses are powerful for identifying novel protein interactions in an unbiased manner, but also that LRRK2 is linked with the regulation of PD-associated proteins that are enriched in microglial cells and specific lysosomal pathways.

9.
iScience ; 26(4): 106408, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36974157

RESUMO

Identification of proteins dysregulated by COVID-19 infection is critically important for better understanding of its pathophysiology, building prognostic models, and identifying new targets. Plasma proteomic profiling of 4,301 proteins was performed in two independent datasets and tested for the association for three COVID-19 outcomes (infection, ventilation, and death). We identified 1,449 proteins consistently associated in both datasets with any of these three outcomes. We subsequently created highly accurate models that distinctively predict infection, ventilation, and death. These proteins were enriched in specific biological processes including cytokine signaling, Alzheimer's disease, and coronary artery disease. Mendelian randomization and gene network analyses identified eight causal proteins and 141 highly connected hub proteins including 35 with known drug targets. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes, reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.

10.
medRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961720

RESUMO

Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

11.
Acta Neuropathol Commun ; 11(1): 68, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101235

RESUMO

Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aß) deposits in the brain and to study Alzheimer's disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; ß = 0.35, SE = 0.01, P = 6.2 × 10-311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associations (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 and ε2 showed race specific effect with stronger association in Non-Hispanic Whites, with the lowest association in Asians. Besides the APOE, we also identified three other genome-wide loci: ABCA7 (rs12151021/chr19p.13.3; ß = 0.07, SE = 0.01, P = 9.2 × 10-09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; ß = 0.1, SE = 0.02, P = 2.4 × 10-10, MAF = 0.18) and FERMT2 locus (rs117834516/chr14q.22.1; ß = 0.16, SE = 0.03, P = 1.1 × 10-09, MAF = 0.06) that all colocalized with AD risk. Sex-stratified analyses identified two novel female-specific signals on chr5p.14.1 (rs529007143, ß = 0.79, SE = 0.14, P = 1.4 × 10-08, MAF = 0.006, sex-interaction P = 9.8 × 10-07) and chr11p.15.2 (rs192346166, ß = 0.94, SE = 0.17, P = 3.7 × 10-08, MAF = 0.004, sex-interaction P = 1.3 × 10-03). We also demonstrated that the overall genetic architecture of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure-related complex human traits. Overall, our results have important implications when estimating the individual risk to a population level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials and therapies.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/genética , Estudo de Associação Genômica Ampla , Amiloidose/diagnóstico por imagem , Amiloidose/genética , Amiloide , Apolipoproteínas E/genética
12.
Invest Ophthalmol Vis Sci ; 61(12): 16, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064130

RESUMO

Purpose: Aging is a critical risk factor for the development of retinal diseases, but how aging perturbs ocular homeostasis and contributes to disease is unknown. We identified transmembrane protein 135 (Tmem135) as a gene important for regulating retinal aging and mitochondrial dynamics in mice. Overexpression of Tmem135 causes mitochondrial fragmentation and pathologies in the hearts of mice. In this study, we examine the eyes of mice overexpressing wild-type Tmem135 (Tmem135 TG) and compare their phenotype to Tmem135 mutant mice. Methods: Eyes were collected for histology, immunohistochemistry, electron microscopy, quantitative PCR, and Western blot analysis. Before tissue collection, electroretinography (ERG) was performed to assess visual function. Mouse retinal pigmented epithelium (RPE) cultures were established to visualize mitochondria. Results: Pathologies were observed only in the RPE of Tmem135 TG mice, including degeneration, migratory cells, vacuolization, dysmorphogenesis, cell enlargement, and basal laminar deposit formation despite similar augmented levels of Tmem135 in the eyecup (RPE/choroid/sclera) and neural retina. We observed reduced mitochondria number and size in the Tmem135 TG RPE. ERG amplitudes were decreased in 365-day-old mice overexpressing Tmem135 that correlated with reduced expression of RPE cell markers. In Tmem135 mutant mice, RPE cells are thicker, smaller, and denser than their littermate controls without any signs of degeneration. Conclusions: Overexpression and mutation of Tmem135 cause contrasting RPE abnormalities in mice that correlate with changes in mitochondrial shape and size (overfragmented in TG vs. overfused in mutant). We conclude proper regulation of mitochondrial homeostasis by TMEM135 is critical for RPE health.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação/genética , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Western Blotting , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/patologia
13.
Genetics ; 214(1): 121-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754016

RESUMO

One major aspect of the aging process is the onset of chronic, low-grade inflammation that is highly associated with age-related diseases. The molecular mechanisms that regulate these processes have not been fully elucidated. We have identified a spontaneous mutant mouse line, small with kinky tail (skt), that exhibits accelerated aging and age-related disease phenotypes including increased inflammation in the brain and retina, enhanced age-dependent retinal abnormalities including photoreceptor cell degeneration, neurodegeneration in the hippocampus, and reduced lifespan. By positional cloning, we identified a deletion in chondroitin sulfate synthase 1 (Chsy1) that is responsible for these phenotypes in skt mice. CHSY1 is a member of the chondroitin N-acetylgalactosaminyltransferase family that plays critical roles in the biosynthesis of chondroitin sulfate, a glycosaminoglycan (GAG) that is attached to the core protein to form the chondroitin sulfate proteoglycan (CSPG). Consistent with this function, the Chsy1 mutation dramatically decreases chondroitin sulfate GAGs in the retina and hippocampus. In addition, macrophage and neutrophil populations appear significantly altered in the bone marrow and spleen of skt mice, suggesting an important role for CHSY1 in the functioning of these immune cell types. Thus, our study reveals a previously unidentified impact of CHSY1 in the retina and hippocampus. Specifically, chondroitin sulfate (CS) modification of proteins by CHSY1 appears critical for proper regulation of immune cells of the myeloid lineage and for maintaining the integrity of neuronal tissues, since a defect in this gene results in increased inflammation and abnormal phenotypes associated with age-related diseases.


Assuntos
Sulfatos de Condroitina/metabolismo , Glucuronosiltransferase/metabolismo , Inflamação/metabolismo , Enzimas Multifuncionais/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/genética , Degeneração Retiniana/metabolismo , Fatores Etários , Animais , Apoptose/fisiologia , Feminino , Glucuronosiltransferase/genética , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enzimas Multifuncionais/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA