Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024389

RESUMO

Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.

2.
Nature ; 553(7686): 82-85, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300014

RESUMO

Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.


Assuntos
Arabidopsis/genética , Cuscuta/genética , Interações Hospedeiro-Parasita/genética , MicroRNAs/metabolismo , Nicotiana/genética , Clivagem do RNA , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/parasitologia , Sequência de Bases , Cuscuta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Especificidade de Hospedeiro , MicroRNAs/genética , Mutação , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Nicotiana/parasitologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Plant Physiol ; 189(2): 687-702, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294033

RESUMO

Cuscuta campestris is an obligate parasitic plant that requires a host to complete its life cycle. Parasite-host connections occur via a haustorium, a unique organ that acts as a bridge for the uptake of water, nutrients, and macromolecules. Research on Cuscuta is often complicated by host influences, but comparable systems for growing the parasite in the absence of a host do not exist. We developed an axenic method to grow C. campestris on an artificial host system (AHS). We evaluated the effects of nutrients and phytohormones on parasite haustoria development and growth. Haustorium morphology and gene expression were also characterized. The AHS consists of an inert, fibrous stick that mimics a host stem, wicking water and nutrients to the parasite. It enables C. campestris to exhibit a parasitic habit and develop through all stages of its life cycle, including production of new shoots and viable seeds. The phytohormones 1-naphthaleneacetic acid and 6-benzylaminopurine affect haustoria morphology and increase parasite fresh weight and biomass. Unigene expression in AHS haustoria reflects processes similar to those in haustoria on living host plants. The AHS is a methodological improvement for studying Cuscuta biology by avoiding specific host effects on the parasite and giving researchers full control of the parasite environment.


Assuntos
Cuscuta , Parasitos , Animais , Cuscuta/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Reguladores de Crescimento de Plantas , Água
4.
Plant Physiol ; 185(4): 1443-1456, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793953

RESUMO

Nonphotosynthetic holoparasites exploit flexible targeting of phylloquinone biosynthesis to facilitate plasma membrane redox signaling. Phylloquinone is a lipophilic naphthoquinone found predominantly in chloroplasts and best known for its function in photosystem I electron transport and disulfide bridge formation of photosystem II subunits. Phylloquinone has also been detected in plasma membrane (PM) preparations of heterotrophic tissues with potential transmembrane redox function, but the molecular basis for this noncanonical pathway is unknown. Here, we provide evidence of PM phylloquinone biosynthesis in a nonphotosynthetic holoparasite Phelipanche aegyptiaca. A nonphotosynthetic and nonplastidial role for phylloquinone is supported by transcription of phylloquinone biosynthetic genes during seed germination and haustorium development, by PM-localization of alternative terminal enzymes, and by detection of phylloquinone in germinated seeds. Comparative gene network analysis with photosynthetically competent parasites revealed a bias of P. aegyptiaca phylloquinone genes toward coexpression with oxidoreductases involved in PM electron transport. Genes encoding the PM phylloquinone pathway are also present in several photoautotrophic taxa of Asterids, suggesting an ancient origin of multifunctionality. Our findings suggest that nonphotosynthetic holoparasites exploit alternative targeting of phylloquinone for transmembrane redox signaling associated with parasitism.


Assuntos
Vias Biossintéticas , Membrana Celular/metabolismo , Orobanchaceae/metabolismo , Orobanchaceae/parasitologia , Plantas/parasitologia , Striga/metabolismo , Striga/parasitologia , Vitamina K 1/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(45): E7010-E7019, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791104

RESUMO

Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.

7.
RNA Biol ; 14(4): 450-455, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28277936

RESUMO

The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication.


Assuntos
Cuscuta/genética , Plantas/parasitologia , RNA de Plantas/genética , Cuscuta/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
8.
Mol Biol Evol ; 32(3): 767-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534030

RESUMO

The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative "parasitism genes." Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.


Assuntos
Duplicação Gênica/genética , Orobanchaceae/genética , Transcriptoma/genética , Análise por Conglomerados , Evolução Molecular , Perfilação da Expressão Gênica , Genes de Plantas/genética , Mimulus/genética , Mimulus/fisiologia , Orobanchaceae/fisiologia
9.
New Phytol ; 202(2): 531-541, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24483232

RESUMO

Seed germination of Striga spp. (witchweeds), one of the world's most destructive parasitic weeds, cannot be induced by light but is specifically induced by strigolactones. It is not known whether Striga uses the same components for strigolactone signaling as host plants, whether it has endogenous strigolactone biosynthesis and whether there is post-germination strigolactone signaling in Striga. Strigolactones could not be detected in in vitro grown Striga, while for host-grown Striga, the strigolactone profile is dominated by a subset of the strigolactones present in the host. Branching of in vitro grown Striga is affected by strigolactone biosynthesis inhibitors. ShMAX2, the Striga ortholog of Arabidopsis MORE AXILLARY BRANCHING 2 (AtMAX2) - which mediates strigolactone signaling - complements several of the Arabidopsis max2-1 phenotypes, including the root and shoot phenotype, the High Irradiance Response and the response to strigolactones. Seed germination of max2-1 complemented with ShMAX2 showed no complementation of the Very Low Fluence Response phenotype of max2-1. Results provide indirect evidence for ShMAX2 functions in Striga. A putative role of ShMAX2 in strigolactone-dependent seed germination of Striga is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Germinação/genética , Lactonas/metabolismo , Caules de Planta/metabolismo , Sementes/metabolismo , Striga/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Genes de Plantas , Luz , Mutação , Fenótipo , Raízes de Plantas , Brotos de Planta , Caules de Planta/crescimento & desenvolvimento , Plantas Daninhas , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Striga/crescimento & desenvolvimento , Striga/metabolismo
10.
BMC Evol Biol ; 13: 48, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425243

RESUMO

BACKGROUND: Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. RESULTS: Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique "disulfide through disulfide knot" structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants. CONCLUSIONS: The HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.


Assuntos
Miniproteínas Nó de Cistina/genética , Evolução Molecular , Transferência Genética Horizontal , Genes de Plantas , Orobanchaceae/genética , Sequência de Aminoácidos , Teorema de Bayes , DNA de Plantas/genética , Fabaceae/genética , Duplicação Gênica , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
11.
BMC Plant Biol ; 13: 9, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23302495

RESUMO

BACKGROUND: Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. RESULTS: The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor ß-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. CONCLUSIONS: Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor's generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor ß-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions.


Assuntos
Medicago truncatula/genética , Orobanchaceae/genética , Proteínas de Plantas/genética , Plantas Daninhas/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Genômica , Especificidade de Hospedeiro , Medicago truncatula/fisiologia , Microdissecção , Orobanchaceae/fisiologia , Proteínas de Plantas/fisiologia , Plantas Daninhas/fisiologia , Zea mays/fisiologia
12.
Opt Express ; 21(12): 14662-73, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787655

RESUMO

A plant science research goal is to manipulate single cells in an intact organism in order to study their interactions with neighboring cells. Based on a technique previously demonstrated in isolated plant cells, mammalian cells and cyanobacteria, Arabidopsis epidermal cells were optoperforated to allow for uptake of external cascade blue-labeled dextrans. Adverse organelle responses were determined to be minimal and dye retention was demonstrated for at least 72 hours. This technique overcomes the physical challenges presented by the plant cell wall and demonstrates the feasibility of in situ optoperforation.


Assuntos
Arabidopsis/metabolismo , Dextranos/farmacocinética , Eletroporação/métodos , Corantes Fluorescentes/farmacocinética , Lasers , Epiderme Vegetal/metabolismo , Arabidopsis/efeitos da radiação , Dextranos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Corantes Fluorescentes/administração & dosagem , Epiderme Vegetal/efeitos da radiação , Distribuição Tecidual
13.
Ann Bot ; 109(1): 181-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22025523

RESUMO

BACKGROUND AND AIMS: Obligate root parasitic plants of the Orobanchaceae do not germinate unless they chemically detect a host plant nearby. Members of this family, like Orobanche, Phelipanche and Striga, are noxious weeds that cause heavy damage to agriculture. In spite of their economic impact, only a few light microscopical studies of their minute seeds have been published, and there is no knowledge of their ultrastructure and of the role each tissue plays during the steps preceding germination. This paper describes the ultrastructure of Phelipanche seeds and contributes to our understanding of seed tissue function. METHODS: Seeds of P. aegyptiaca were examined under light, scanning electron, transmission electron and fluorescence microscopy following various fixations and staining protocols. The results were interpreted with physiological data regarding mode of water absorption and germination stimulation. KEY RESULTS AND CONCLUSIONS: The endothelium, which is the inner layer of the testa, rapidly absorbs water. Its interconnected cells are filled with mucilage and contain labyrinthine walls, facilitating water accumulation for germination that starts after receiving germination stimuli. Swelling of the endothelium leads to opening of the micropyle. The perisperm cells underneath this opening mediate between the rhizosphere and the embryo and are likely to be the location for the receptors of germination stimuli. The other perisperm cells are loaded with lipids and protein bodies, as are the endosperm and parts of the embryo. In the endosperm, the oil bodies fuse with each other while they are intact in the embryo and perisperm. Plasmodesmata connect the perisperm cells to each other, and the cells near the micropyle tightly surround the emerging seedling. These perisperm cells, and also the proximal embryo cells, have dense cytoplasmic contents, and they seem to represent the two seed components that are actively involved in transfer of reserve nutrients to the developing seedling during germination.


Assuntos
Orobanchaceae/metabolismo , Orobanchaceae/ultraestrutura , Sementes/metabolismo , Sementes/ultraestrutura , Água/metabolismo , Absorção , Germinação/fisiologia , Interações Hospedeiro-Parasita , Israel , Solanum lycopersicum/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Daninhas/metabolismo , Plantas Daninhas/ultraestrutura
14.
Ecol Evol ; 12(3): e8750, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356582

RESUMO

Crenate broomrape (Orobanche crenata Forsk.) is a serious long-standing parasitic weed problem in Algeria, mainly affecting legumes but also vegetable crops. Unresolved questions for parasitic weeds revolve around the extent to which these plants undergo local adaptation, especially with respect to host specialization, which would be expected to be a strong selective factor for obligate parasitic plants. In the present study, the genotyping-by-sequencing (GBS) approach was used to analyze genetic diversity and population structure of 10 Northern Algerian O. crenata populations with different geographical origins and host species (faba bean, pea, chickpea, carrot, and tomato). In total, 8004 high-quality single-nucleotide polymorphisms (5% missingness) were obtained and used across the study. Genetic diversity and relationships of 95 individuals from 10 populations were studied using model-based ancestry analysis, principal components analysis, discriminant analysis of principal components, and phylogeny approaches. The genetic differentiation (F ST) between pairs of populations was lower between adjacent populations and higher between geographically separated ones, but no support was found for isolation by distance. Further analyses identified four genetic clusters and revealed evidence of structuring among populations and, although confounded with location, among hosts. In the clearest example, O. crenata growing on pea had a SNP profile that was distinct from other host/location combinations. These results illustrate the importance and potential of GBS to reveal the dynamics of parasitic weed dispersal and population structure.

15.
Plant Cell Rep ; 30(12): 2233-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21811827

RESUMO

Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Orobanchaceae/metabolismo , Plantas Daninhas/metabolismo , Solanum lycopersicum/parasitologia , Corantes Fluorescentes/metabolismo , Solanum lycopersicum/metabolismo , Floema/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Transporte Proteico
16.
Curr Biol ; 31(5): R241-R243, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689720

RESUMO

The genome of the parasitic plant Sapria himalayana reveals extraordinary changes that reflect its endoparasitic lifestyle. The genome has lost many genes, including the entire chloroplast genome, but has gained genes through horizontal gene transfer and repeated transposable elements.


Assuntos
Genoma de Cloroplastos , Espécies Introduzidas , Biologia , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Plantas
17.
Trends Plant Sci ; 26(10): 1050-1060, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34238685

RESUMO

Weeds, plants that thrive in the face of disturbance, have eluded human's attempts at control for >12 000 years, positioning them as a unique group of extreme stress tolerators. The most successful weeds have a suite of traits that enable them to rapidly adapt to environments typified by stress, growing in hostile conditions or subject to massive destruction from agricultural practices. Through their ability to persist and adapt, weeds illuminate principles of evolution and provide insights into weed management and crop improvement. Here we highlight why the time is right to move beyond traditional model systems and leverage weeds to gain a deeper understanding of the mechanisms, adaptations, and genetic and physiological bases for stress tolerance.


Assuntos
Produtos Agrícolas , Herbicidas , Adaptação Fisiológica , Agricultura , Produtos Agrícolas/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas
18.
Plants (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009096

RESUMO

Cuscuta spp. are obligate parasites that connect to host vascular tissue using a haustorium. In addition to water, nutrients, and metabolites, a large number of mRNAs are bidirectionally exchanged between Cuscuta spp. and their hosts. This trans-specific movement of mRNAs raises questions about whether these molecules function in the recipient species. To address the possibility that mobile mRNAs are ultimately translated, we built upon recent studies that demonstrate a role for transfer RNA (tRNA)-like structures (TLSs) in enhancing mRNA systemic movement. C. campestris was grown on Arabidopsis that expressed a ß-glucuronidase (GUS) reporter transgene either alone or in GUS-tRNA fusions. Histochemical staining revealed localization in tissue of C. campestris grown on Arabidopsis with GUS-tRNA fusions, but not in C. campestris grown on Arabidopsis with GUS alone. This corresponded with detection of GUS transcripts in Cuscuta on Arabidopsis with GUS-tRNA, but not in C. campestris on Arabidopsis with GUS alone. Similar results were obtained with Arabidopsis host plants expressing the same constructs containing an endoplasmic reticulum localization signal. In C. campestris, GUS activity was localized in the companion cells or phloem parenchyma cells adjacent to sieve tubes. We conclude that host-derived GUS mRNAs are translated in C. campestris and that the TLS fusion enhances RNA mobility in the host-parasite interactions.

19.
Annu Rev Phytopathol ; 57: 279-299, 2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31226021

RESUMO

Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant-pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.


Assuntos
Orobanche , Striga , Raízes de Plantas , Simbiose
20.
Metabolites ; 9(6)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200467

RESUMO

Parasitic weeds of the family Orobanchaceae attach to the roots of host plants via haustoria capable of drawing nutrients from host vascular tissue. The connection of the haustorium to the host marks a shift in parasite metabolism from autotrophy to at least partial heterotrophy, depending on the level of parasite dependence. Species within the family Orobanchaceae span the spectrum of host nutrient dependency, yet the diversity of parasitic plant metabolism remains poorly understood, particularly during the key metabolic shift surrounding haustorial attachment. Comparative profiling of major metabolites in the obligate holoparasite Phelipanche aegyptiaca and the facultative hemiparasite Triphysaria versicolor before and after attachment to the hosts revealed several metabolic shifts implicating remodeling of energy and amino acid metabolism. After attachment, both parasites showed metabolite profiles that were different from their respective hosts. In P. aegyptiaca, prominent changes in metabolite profiles were also associated with transitioning between different tissue types before and after attachment, with aspartate levels increasing significantly after the attachment. Based on the results from 15N labeling experiments, asparagine and/or aspartate-rich proteins were enriched in host-derived nitrogen in T. versicolor. These results point to the importance of aspartate and/or asparagine in the early stages of attachment in these plant parasites and provide a rationale for targeting aspartate-family amino acid biosynthesis for disrupting the growth of parasitic weeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA