Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Med Virol ; 95(8): e29022, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565757

RESUMO

While Mpox virus (MPXV) diagnostics were performed in specialized laboratories only, the global emergence of Mpox cases in 2022 revealed the need for a more readily available diagnostic. Automated random-access platforms with fast nucleic acid extraction and PCR have become established in many laboratories, providing faster and more accessible testing. In this study, we adapted a previously published generic MPXV-PCR as a lab-developed test (LDT) on a NeuMoDx Molecular System and isolated MPXV clones from patient materials. To reduce the handling of infectious material, we evaluated a viral lysis buffer (VLB) for sample pretreatment. We further compared the MPXV-LDT-PCR to conventional real-time PCR, determined its sensitivity and specificity using positive swabs, and assessed its performance using external quality assessment samples. Pretreatment of samples with 50% VLB reduced MPXV infectivity by approximately 200-fold while maintaining PCR sensitivity. The assay demonstrated a sensitivity and specificity of 100% with no cross-reactivity in the samples tested and performed with a limit of detection of 262 GE/mL. In summary, the assay had a turnaround time of fewer than 2 h and can easily be transferred to other automated PCR platforms, providing a basis for developing rapid assays for upcoming pandemics.


Assuntos
Monkeypox virus , Mpox , Técnicas de Amplificação de Ácido Nucleico , Humanos , Monkeypox virus/genética , Monkeypox virus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Mpox/diagnóstico
2.
EMBO Rep ; 22(6): e49568, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33969602

RESUMO

Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.


Assuntos
DNA Circular , Vírus da Hepatite B , Antivirais/farmacologia , Citidina Desaminase , DNA Circular/genética , DNA Viral/genética , DNA Viral/farmacologia , Exorribonucleases , Vírus da Hepatite B/genética , Humanos , Interferons , Proteínas , Replicação Viral
3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175977

RESUMO

CRISPR/Cas systems are some of the most promising tools for therapeutic genome editing. The use of these systems is contingent on the optimal designs of guides and homology-directed repair (HDR) templates. While this design can be achieved in silico, validation and further optimization are usually performed with the help of reporter systems. Here, we describe a novel reporter system, termed BETLE, that allows for the fast, sensitive, and cell-specific detection of genome editing and template-specific HDR by encoding multiple reporter proteins in different open-reading frames. Out-of-frame non-homologous end joining (NHEJ) leads to the expression of either secretable NanoLuc luciferase, enabling a highly sensitive and low-cost analysis of editing, or fluorescent mTagBFP2, allowing for the enumeration and tissue-specific localization of genome-edited cells. BETLE includes a site to validate CRISPR/Cas systems for a sequence-of-interest, making it broadly adaptable. We evaluated BETLE using a defective moxGFP with a 39-base-pair deletion and showed spCas9, saCas9, and asCas12a editing as well as sequence-specific HDR and the repair of moxGFP in cell lines with single and multiple reporter integrants. Taken together, these data show that BETLE allows for the rapid detection and optimization of CRISPR/Cas genome editing and HDR in vitro and represents a state-of the art tool for future applications in vivo.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas/genética , Edição de Genes , Reparo do DNA por Junção de Extremidades , Genoma
4.
Hepatology ; 74(4): 1766-1781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991110

RESUMO

BACKGROUND AND AIMS: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia-inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis-related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization. APPROACH AND RESULTS: We addressed whether HIF1α interferes with immune-mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTßR-agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT-qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune-active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti-HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up-regulation and -mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v-rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator. CONCLUSIONS: In conclusion, inhibiting HIF1α expression or stabilization represents an anti-HBV strategy in the context of immune-mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies.


Assuntos
Citidina Desaminase/genética , Hepatite B Crônica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Fator de Transcrição RelB/genética , Aminoácidos Dicarboxílicos/farmacologia , Animais , Linhagem Celular , Citidina Desaminase/metabolismo , DNA Circular/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Vírus da Hepatite B , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Receptor beta de Linfotoxina/agonistas , Camundongos , Viabilidade Microbiana , Antígenos de Histocompatibilidade Menor/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição RelB/efeitos dos fármacos , Fator de Transcrição RelB/metabolismo
5.
J Hepatol ; 75(5): 1058-1071, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34171437

RESUMO

BACKGROUND & AIMS: Current antiviral therapies control but rarely eliminate HBV, leaving chronic HBV carriers at risk of developing hepatocellular carcinoma (HCC). Lacking or dysfunctional virus-specific adaptive immunity prevents control of HBV and allows the virus to persist. Restoring antiviral T-cell immunity could lead to HBV elimination and cure of chronically infected patients. METHODS: We constructed bispecific T-cell engager antibodies that are designed to induce antiviral immunity through simultaneous binding of HBV envelope proteins (HBVenv) on infected hepatocytes and CD3 or CD28 on T cells. T-cell engager antibodies were employed in co-cultures with healthy donor lymphocytes and HBV-infected target cells. Activation of the T-cell response was determined by detection of pro-inflammatory cytokines, effector function (by cytotoxicity) and antiviral effects. To study in vivo efficacy, immune-deficient mice were transplanted with HBVenv-positive and -negative hepatoma cells. RESULTS: The 2 T-cell engager antibodies synergistically activated T cells to become polyfunctional effectors that in turn elicited potent antiviral effects by killing infected cells and in addition controlled HBV via non-cytolytic, cytokine-mediated antiviral mechanisms. In vivo in mice, the antibodies attracted T cells specifically to the tumors expressing HBVenv resulting in T-cell activation, tumor infiltration and reduction of tumor burden. CONCLUSION: This study demonstrates that the administration of HBVenv-targeting T-cell engager antibodies facilitates a robust T-cell redirection towards HBV-positive target cells and provides a feasible and promising approach for the treatment of chronic viral hepatitis and HBV-associated HCC. LAY SUMMARY: T-cell engager antibodies are an interesting, novel therapeutic tool to restore immunity in patients with chronic hepatitis B. As bispecific antibodies, they bind envelope proteins on the surface of the hepatitis B virus (HBV) and CD3 or CD28 on T cells. This way, they induce a potent antiviral and cytotoxic T-cell response that leads to the elimination of HBV-positive cells. These bispecific T-cell engager antibodies are exciting therapeutic candidates for chronic hepatitis B and HBV-associated hepatocellular carcinoma.


Assuntos
Antígenos da Hepatite B/sangue , Hepatite B/sangue , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Citometria de Fluxo/estatística & dados numéricos , Hepatite B/epidemiologia , Antígenos da Hepatite B/análise , Antígenos da Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Camundongos , Estatísticas não Paramétricas , Linfócitos T/fisiologia
6.
J Hepatol ; 75(1): 64-73, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33516779

RESUMO

BACKGROUND & AIMS: Hypoxia inducible factors (HIFs) are a hallmark of inflammation and are key regulators of hepatic immunity and metabolism, yet their role in HBV replication is poorly defined. HBV replicates in hepatocytes within the liver, a naturally hypoxic organ, however most studies of viral replication are performed under conditions of atmospheric oxygen, where HIFs are inactive. We therefore investigated the role of HIFs in regulating HBV replication. METHODS: Using cell culture, animal models, human tissue and pharmacological agents inhibiting the HIF-prolyl hydroxylases, we investigated the impact of hypoxia on the HBV life cycle. RESULTS: Culturing liver cell-based model systems under low oxygen uncovered a new role for HIFs in binding HBV DNA and activating the basal core promoter, leading to increased pre-genomic RNA and de novo HBV particle secretion. The presence of hypoxia responsive elements among all primate members of the hepadnaviridae highlights an evolutionary conserved role for HIFs in regulating this virus family. CONCLUSIONS: Identifying a role for this conserved oxygen sensor in regulating HBV transcription suggests that this virus has evolved to exploit the HIF signaling pathway to persist in the low oxygen environment of the liver. Our studies show the importance of considering oxygen availability when studying HBV-host interactions and provide innovative routes to better understand and target chronic HBV infection. LAY SUMMARY: Viral replication in host cells is defined by the cellular microenvironment and one key factor is local oxygen tension. Hepatitis B virus (HBV) replicates in the liver, a naturally hypoxic organ. Hypoxia inducible factors (HIFs) are the major sensors of low oxygen; herein, we identify a new role for these factors in regulating HBV replication, revealing new therapeutic targets.


Assuntos
Vírus da Hepatite B , Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Fator 6 Semelhante a Kruppel/metabolismo , Oxigênio/metabolismo , Replicação Viral/fisiologia , Animais , Microambiente Celular , Hepadnaviridae/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Ativação Transcricional
7.
Cell Microbiol ; 22(12): e13250, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32799415

RESUMO

Hepatitis B virus (HBV) is an enveloped DNA virus that contains a partially double-stranded relaxed circular (rc) DNA. Upon infection, rcDNA is delivered to the nucleus where it is repaired to covalently closed circular (ccc) DNA that serves as the transcription template for all viral RNAs. Our understanding of HBV particle entry dynamics and host pathways regulating intracellular virus trafficking and cccDNA formation is limited. The discovery of sodium taurocholate co-transporting peptide (NTCP) as the primary receptor allows studies on these early steps in viral life cycle. We employed a synchronised infection protocol to quantify HBV entry kinetics. HBV attachment to cells at 4°C is independent of NTCP, however, subsequent particle uptake is NTCP-dependent and reaches saturation at 12 h post-infection. HBV uptake is clathrin- and dynamin dependent with actin and tubulin playing a role in the first 6 h of infection. Cellular fractionation studies demonstrate HBV DNA in the nucleus within 6 h of infection and cccDNA was first detected at 24 h post-infection. Our studies show the majority (83%) of cell bound particles enter HepG2-NTCP cells, however, only a minority (<1%) of intracellular rcDNA was converted to cccDNA, highlighting this as a rate-limiting in establishing infection in vitro. This knowledge highlights the deficiencies in our in vitro cell culture systems and will inform the design and evaluation of physiologically relevant models that support efficient HBV replication.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Estágios do Ciclo de Vida/fisiologia , Replicação Viral , DNA Viral/genética , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Técnicas In Vitro , Cinética , RNA Viral/metabolismo , Simportadores/genética , Simportadores/metabolismo , Internalização do Vírus
8.
Med Microbiol Immunol ; 210(1): 65-72, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33452927

RESUMO

Successful containment strategies for the SARS-CoV-2 pandemic will depend on reliable diagnostic assays. Point-of-care antigen tests (POCT) may provide an alternative to time-consuming PCR tests to rapidly screen for acute infections on site. Here, we evaluated two SARS-CoV-2 antigen tests: the STANDARD™ F COVID-19 Ag FIA (FIA) and the SARS-CoV-2 Rapid Antigen Test (RAT). For diagnostic assessment, we used a large set of PCR-positive and PCR-negative respiratory swabs from asymptomatic and symptomatic patients and health care workers in the setting of two University Hospitals in Munich, Germany, i.e. emergency rooms, patient care units or employee test centers. For FIA, overall clinical sensitivity and specificity were 45.4% (n = 381) and 97.8% (n = 360), respectively, and for RAT, 50.3% (n = 445) and 97.7% (n = 386), respectively. For primary diagnosis of asymptomatic and symptomatic individuals, diagnostic sensitivities were 60.9% (FIA) (n = 189) and 64.5% (RAT) (n = 256). This questions these tests' utility for the reliable detection of acute SARS-CoV-2-infected individuals, in particular in high-risk settings. We support the proposal that convincing high-quality outcome data on the impact of false-negative and false-positive antigen test results need to be obtained in a POCT setting. Moreover, the efficacy of alternative testing strategies to complement PCR assays must be evaluated by independent laboratories, prior to widespread implementation in national and international test strategies.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Adulto , Antígenos Virais/sangue , Criança , Pré-Escolar , Reações Falso-Negativas , Reações Falso-Positivas , Alemanha , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
9.
J Infect Dis ; 220(4): 567-577, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30923817

RESUMO

BACKGROUND: Type III interferons (IFNs) (λ1-3) activate similar signaling cascades as type I IFNs (α and ß) via different receptors. Since IFN-α and lymphotoxin-ß activate cytosine deamination and subsequent purging of nuclear hepatitis B virus (HBV) DNA, we investigated whether IFN-ß and -λ may also induce these antiviral effects in differentiated HBV-infected hepatocytes. METHODS: After determining the biological activity of IFN-α2, -ß1, -λ1, and -λ2 in differentiated hepatocytes, their antiviral effects were analyzed in HBV-infected primary human hepatocytes and HepaRG cells. RESULTS: Type I and III IFNs reduced nuclear open-circle DNA and covalently closed circular DNA (cccDNA) levels in HBV-infected cells. IFN-ß and -λ were at least as efficient as IFN-α. Differential DNA-denaturing polymerase chain reaction and sequencing analysis revealed G-to-A sequence alterations of HBV cccDNA in IFN-α, -ß, and -λ-treated liver cells indicating deamination. All IFNs induced apolipoprotein B messenger RNA-editing enzyme-catalytic polypeptide-like (APOBEC) deaminases 3A and 3G within 24 hours of treatment, but IFN-ß and -λ induced longer-lasting expression of APOBEC deaminases in comparison to IFN-α. CONCLUSIONS: IFN-ß, IFN-λ1, and IFN-λ2 induce cccDNA deamination and degradation at least as efficiently as IFN-α, indicating that these antiviral cytokines are interesting candidates for the design of new therapeutic strategies aiming at cccDNA reduction and HBV cure.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Interferon Tipo I/farmacologia , Interferons/farmacologia , Células Cultivadas , Citocinas/imunologia , DNA Circular/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Interferon-alfa/imunologia , Interferon beta/imunologia , Interferons/imunologia , Interferon lambda
10.
J Hepatol ; 69(6): 1231-1241, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30142426

RESUMO

BACKGROUND & AIMS: Several steps in the HBV life cycle remain obscure because of a lack of robust in vitro infection models. These steps include particle entry, formation and maintenance of covalently closed circular (ccc) DNA, kinetics of gene expression and viral transmission routes. This study aimed to investigate infection kinetics and cccDNA dynamics during long-term culture. METHODS: We selected a highly permissive HepG2-NTCP-K7 cell clone engineered to express sodium taurocholate co-transporting polypeptide (NTCP) that supports the full HBV life cycle. We characterized the replication kinetics and dynamics of HBV over six weeks of infection. RESULTS: HBV infection kinetics showed a slow infection process. Nuclear cccDNA was only detected 24 h post-infection and increased until 3 days post-infection (dpi). Viral RNAs increased from 3 dpi reaching a plateau at 6 dpi. HBV protein levels followed similar kinetics with HBx levels reaching a plateau first. cccDNA levels modestly increased throughout the 45-day study period with 5-12 copies per infected cell. Newly produced relaxed circular DNA within capsids was reimported into the nucleus and replenished the cccDNA pool. In addition to intracellular recycling of HBV genomes, secondary de novo infection events resulted in cccDNA formation. Inhibition of relaxed circular DNA formation by nucleoside analogue treatment of infected cells enabled us to measure cccDNA dynamics. HBV cccDNA decayed slowly with a half-life of about 40 days. CONCLUSIONS: After a slow infection process, HBV maintains a stable cccDNA pool by intracellular recycling of HBV genomes and via secondary infection. Our results provide important insights into the dynamics of HBV infection and support the future design and evaluation of new antiviral agents. LAY SUMMARY: Using a unique hepatocellular model system designed to support viral growth, we demonstrate that hepatitis B virus (HBV) has remarkably slow infection kinetics. Establishment of the episomal transcription template and the persistent form of the virus, so called covalently closed circular DNA, as well as viral transcription and protein expression all take a long time. Once established, HBV maintains a stable pool of covalently closed circular DNA via intracellular recycling of HBV genomes and through infection of naïve cells by newly formed virions.


Assuntos
Coinfecção/virologia , DNA Circular/metabolismo , DNA Viral/metabolismo , Genoma Viral/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Dimetil Sulfóxido/metabolismo , Meia-Vida , Células Hep G2 , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Polietilenoglicóis/metabolismo , RNA Viral/metabolismo , Simportadores/metabolismo , Replicação Viral
11.
Gastroenterology ; 150(1): 194-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26416327

RESUMO

BACKGROUND & AIMS: Viral clearance involves immune cell cytolysis of infected cells. However, studies of hepatitis B virus (HBV) infection in chimpanzees have indicated that cytokines released by T cells also can promote viral clearance via noncytolytic processes. We investigated the noncytolytic mechanisms by which T cells eliminate HBV from infected hepatocytes. METHODS: We performed a cytokine enzyme-linked immunosorbent assay of serum samples from patients with acute and chronic hepatitis B. Liver biopsy specimens were analyzed by in situ hybridization. HepG2-H1.3 cells, HBV-infected HepaRG cells, and primary human hepatocytes were incubated with interferon-γ (IFNγ) or tumor necrosis factor-α (TNF-α), or co-cultured with T cells. We measured markers of HBV replication, including the covalently closed circular DNA (cccDNA). RESULTS: Levels of IFNγ and TNF-α were increased in serum samples from patients with acute vs chronic hepatitis B and controls. In human hepatocytes with stably replicating HBV, as well as in HBV-infected primary human hepatocytes or HepaRG cells, IFNγ and TNF-α each induced deamination of cccDNA and interfered with its stability; their effects were additive. HBV-specific T cells, through secretion of IFNγ and TNF-α, inhibited HBV replication and reduced cccDNA in infected cells without the direct contact required for cytolysis. Blocking IFNγ and TNF-α after T-cell stimulation prevented the loss of cccDNA. Deprivation of cccDNA required activation of nuclear APOBEC3 deaminases by the cytokines. In liver biopsy specimens from patients with acute hepatitis B, but not chronic hepatitis B or controls, hepatocytes expressed APOBEC3A and APOBEC3B. CONCLUSIONS: IFNγ and TNF-α, produced by T cells, reduce levels of HBV cccDNA in hepatocytes by inducing deamination and subsequent cccDNA decay.


Assuntos
Hepatite B/metabolismo , Interferon gama/farmacologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Células Cultivadas , Técnicas de Cocultura , Replicação do DNA/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , DNA Viral/imunologia , Ensaio de Imunoadsorção Enzimática , Células Hep G2/imunologia , Células Hep G2/metabolismo , Hepacivirus/metabolismo , Hepatite B/fisiopatologia , Hepatite B Crônica/imunologia , Humanos , Linfócitos T/imunologia , Carga Viral
12.
Virology ; 595: 110089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640789

RESUMO

The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.


Assuntos
Hepatite B , Hepatite D , Humanos , Hepatite B/virologia , Hepatite D/virologia , Pesquisa Biomédica , Pesquisadores , Vírus da Hepatite B
13.
Viruses ; 16(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793623

RESUMO

Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal role in direct cytotoxicity and the secretion of antiviral cytokines as well as regulatory function. The aim of this study was to further elucidate NK cell responses triggered by an HBV infection. Therefore, we optimized HBV in vitro models that reliably stimulate NK cells using hepatocyte-like HepG2 cells expressing the Na+-taurocholate co-transporting polypeptide (NTCP) and HepaRG cells. Immune cells were acquired from healthy platelet donors. Initially, HepG2-NTCP cells demonstrated higher viral replication compared to HepaRG cells. Co-cultures with immune cells revealed increased production of interferon-γ and tumor necrosis factor-α by NK cells, which was no longer evident in isolated NK cells. Likewise, the depletion of monocytes and spatial separation from target cells led to the absence of the antiviral cytokine production of NK cells. Eventually, the combined co-culture of isolated NK cells and monocytes led to a sufficient cytokine response of NK cells, which was also apparent when communication between the two immune cell subpopulations was restricted to soluble factors. In summary, our study demonstrates antiviral cytokine production by NK cells in response to HBV+ HepG2-NTCP cells, which is dependent on monocyte bystander activation.


Assuntos
Técnicas de Cocultura , Citocinas , Vírus da Hepatite B , Hepatite B , Células Matadoras Naturais , Monócitos , Humanos , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Monócitos/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Citocinas/metabolismo , Células Hep G2 , Hepatite B/imunologia , Hepatite B/virologia , Replicação Viral , Interferon gama/metabolismo , Interferon gama/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Hepatócitos/virologia , Hepatócitos/imunologia
14.
Vaccines (Basel) ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400138

RESUMO

Adenoviral vectors based on the human adenovirus species C serotype 5 (HAdV-C5) are commonly used for vector-based gene therapies and vaccines. In the preclinical stages of development, their safety and efficacy are often validated in suitable animal models. However, pre-existing neutralizing antibodies may severely influence study outcomes. Here, we generated a new HAdV-C5-based reporter vector and established a high-throughput screening assay for the multivalent detection of HAdV-C5-neutralizing antibodies in serum. We screened the sera of rhesus macaques at different primate centers, and of rabbits, horses, cats, and dogs, showing that HAdV-C5-neutralizing antibodies can be found in all species, albeit at different frequencies. Our results emphasize the need to prescreen model animals in HAdV-C5-based studies.

15.
Microbiol Spectr ; 11(6): e0176823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37831440

RESUMO

IMPORTANCE: The results from this study demonstrate the usefulness of a second-generation rapid antigen test for early detection of infection with the SARS-CoV-2 Omicron variant of concern (VoC) and reveal a higher sensitivity to detect immune escape Omicron VoCs compared to a first-generation rapid antigen test (89.4% vs 83.7%) in the high-risk group of healthcare workers.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pessoal de Saúde
16.
Hum Gene Ther ; 34(23-24): 1204-1218, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747811

RESUMO

Adoptive T cell therapy using natural T cell receptor (TCR) redirection is a promising approach to fight solid cancers and viral infections in liver and other organs. However, clinical efficacy of such TCR+-T cells has been limited so far. One reason is that syngeneic preclinical models to evaluate safety and efficacy of TCR+-T cells are missing. We, therefore, developed an efficient viral vector strategy mediating expression of human major histocompatibility complex (MHC)-I in hepatocytes, which allows evaluation of TCR-T cell therapies targeting diseased liver cells. We designed adeno-associated virus (AAV) and adenoviral vectors encoding either the human-mouse chimeric HLA-A*02-like molecule, or fully human HLA-A*02 and human ß2 microglobulin (hß2m). Upon transduction of murine hepatocytes, the HLA-A*02 construct proved superior in terms of expression levels, presentation of endogenously processed peptides and activation of murine TCR+-T cells grafted with HLA-A*02-restricted, hepatitis B virus (HBV)-specific TCRs. In vivo, these T cells elicited effector function, controlled HBV replication, and reduced HBV viral load and antigen expression in livers of those mice that had received AAV-HBV and AAV-HLA-A*02. We then demonstrated the broad utility of this approach by grafting macaque T cells with the HBV-specific TCRs and enabling them to recognize HBV-infected primary macaque hepatocytes expressing HLA-A*02 upon adenoviral transduction. In conclusion, AAV and adenovirus vectors are suitable for delivery of HLA-A*02 and hß2m into mouse and macaque hepatocytes. When recognizing their cognate antigen in HLA-A*02-transduced mouse livers or on isolated macaque hepatocytes, HLA-A*02-restricted, HBV-specific TCR+-T cells become activated and exert antiviral effector functions. This approach is applicable to any MHC restriction and target disease, paving the way for safety and efficacy studies of human TCR-based therapies in physiologically relevant preclinical animal models.


Assuntos
Vírus da Hepatite B , Hepatócitos , Humanos , Camundongos , Animais , Vírus da Hepatite B/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Técnicas de Cultura de Células , Antígenos HLA-A
17.
Cell Mol Gastroenterol Hepatol ; 16(2): 201-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37054914

RESUMO

BACKGROUND & AIMS: A single hepatitis B virus (HBV) particle is sufficient to establish chronic infection of the liver after intravenous injection, suggesting that the virus targets hepatocytes via a highly efficient transport pathway. We therefore investigated whether HBV uses a physiological liver-directed pathway that supports specific host-cell targeting in vivo. METHODS: We established the ex vivo perfusion of intact human liver tissue that recapitulates the liver physiology to investigate HBV liver targeting. This model allowed us to investigate virus-host cell interactions in a cellular microenvironment mimicking the in vivo situation. RESULTS: HBV was rapidly sequestered by liver macrophages within 1 hour after a virus pulse perfusion but was detected in hepatocytes only after 16 hours. We found that HBV associates with lipoproteins in serum and within machrophages. Electron and immunofluorescence microscopy corroborated a co-localization in recycling endosomes within peripheral and liver macrophages. Recycling endosomes accumulated HBV and cholesterol, followed by transport of HBV back to the cell surface along the cholesterol efflux pathway. To reach hepatocytes as final target cells, HBV was able to utilize the hepatocyte-directed cholesterol transport machinery of macrophages. CONCLUSIONS: Our results propose that by binding to liver targeted lipoproteins and using the reverse cholesterol transport pathway of macrophages, HBV hijacks the physiological lipid transport pathways to the liver to most efficiently reach its target organ. This may involve transinfection of liver macrophages and result in deposition of HBV in the perisinusoidal space from where HBV can bind its receptor on hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Lipídeos
18.
JHEP Rep ; 4(9): 100514, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35898957

RESUMO

Background & Aims: The chronicity of HBV (and resultant liver disease) is determined by intrahepatic persistence of the HBV covalently closed circular DNA (cccDNA), an episomal form that encodes all viral transcripts. Therefore, cccDNA is a key target for new treatments, with the ultimate therapeutic aim being its complete elimination. Although established cccDNA molecules are known to be stable in resting hepatocytes, we aimed to understand their fate in dividing cells using in vitro models. Methods: We infected HepG2-NTCP and HepaRG-NTCP cells with HBV and induced mitosis by passaging cells. We measured cccDNA copy number (by precise PCR assays) and HBV-expressing cells (by immunofluorescence) with wild-type HBV. We used reporter viruses expressing luciferase or RFP to track number of HBV-expressing cells over time after mitosis induction using luciferase assays and live imaging, respectively. Results: In all cases, we observed dramatic reductions in cccDNA levels, HBV-positive cell numbers, and cccDNA-dependent protein expression after each round of cell mitosis. The rates of reduction were highly consistent with mathematical models of a complete cccDNA loss in (as opposed to dilution into) daughter cells. Conclusions: Our results are concordant with previous animal models of HBV infection and show that HBV persistence can be efficiently overcome by inducing cell mitosis. These results support therapeutic approaches that induce liver turnover (e.g. immune modulators) in addition to direct-acting antiviral therapies to achieve hepatitis B cure. Lay summary: Chronic hepatitis B affects 300 million people (killing 884,000 per year) and is incurable. To cure it, we need to clear the HBV genome from the liver. In this study, we looked at how the virus behaves after a cell divides. We found that it completely clears the virus, making 2 new uninfected cells. Our work informs new approaches to develop cures for chronic hepatitis B infections.

19.
Mol Ther Methods Clin Dev ; 24: 241-254, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35211637

RESUMO

Genome engineering is a powerful tool for in vitro research and the creation of novel model organisms and has growing clinical applications. Randomly integrating vectors, such as lentivirus- or transposase-based methods, are simple and easy to use but carry risks arising from insertional mutagenesis. Here we present enhanced-specificity tagmentation-assisted PCR (esTag-PCR), a rapid and accurate method for mapping transgene integration and copy number. Using stably transfected HepG2 cells, we demonstrate that esTag-PCR has higher integration site detection accuracy and efficiency than alternative tagmentation-based methods. Next, we performed esTag-PCR on rhesus macaque embryos derived from zygotes injected with piggyBac transposase and transposon/transgene plasmid. Using low-input trophectoderm biopsies, we demonstrate that esTag-PCR accurately maps integration events while preserving blastocyst viability. We used these high-resolution data to evaluate the performance of piggyBac-mediated editing of rhesus macaque embryos, demonstrating that increased concentration of transposon/transgene plasmid can increase the fraction of embryos with stable integration; however, the number of integrations per embryo also increases, which may be problematic for some applications. Collectively, esTag-PCR represents an important improvement to the detection of transgene integration, provides a method to validate and screen edited embryos before implantation, and represents an important advance in the creation of transgenic animal models.

20.
Nat Commun ; 13(1): 2995, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637225

RESUMO

Hepatitis B virus has infected a third of the world's population, and 296 million people are living with chronic infection. Chronic infection leads to progressive liver disease, including hepatocellular carcinoma and liver failure, and there remains no reliable curative therapy. These gaps in our understanding are due, in large part, to a paucity of animal models of HBV infection. Here, we show that rhesus macaques regularly clear acute HBV infection, similar to adult humans, but can develop long-term infection if immunosuppressed. Similar to patients, we longitudinally detected HBV DNA, HBV surface antigen, and HBV e antigen in the serum of experimentally infected animals. In addition, we discovered hallmarks of HBV infection in the liver, including RNA transcription, HBV core and HBV surface antigen translation, and covalently closed circular DNA biogenesis. This pre-clinical animal model will serve to accelerate emerging HBV curative therapies into the clinic.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Animais , Antígenos de Superfície , Vírus da Hepatite B/genética , Humanos , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA