Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9147-9157, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743431

RESUMO

Recent studies have shown that methane emissions are underestimated by inventories in many US urban areas. This has important implications for climate change mitigation policy at the city, state, and national levels. Uncertainty in both the spatial distribution and sectoral allocation of urban emissions can limit the ability of policy makers to develop appropriately focused emission reduction strategies. Top-down emission estimates based on atmospheric greenhouse gas measurements can help to improve inventories and inform policy decisions. This study presents a new high-resolution (0.02 × 0.02°) methane emission inventory for New York City and its surrounding area, constructed using the latest activity data, emission factors, and spatial proxies. The new high-resolution inventory estimates of methane emissions for the New York-Newark urban area are 1.3 times larger than those for the gridded Environmental Protection Agency inventory. We used aircraft mole fraction measurements from nine research flights to optimize the high-resolution inventory emissions within a Bayesian inversion. These sectorally optimized emissions show that the high-resolution inventory still significantly underestimates methane emissions within the New York-Newark urban area, primarily because it underestimates emissions from thermogenic sources (by a factor of 2.3). This suggests that there remains a gap in our process-based understanding of urban methane emissions.


Assuntos
Metano , Cidade de Nova Iorque , Metano/análise , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Teorema de Bayes
2.
Environ Sci Technol ; 57(48): 19565-19574, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941355

RESUMO

Urban methane emissions estimated using atmospheric observations have been found to exceed estimates derived by using traditional inventory methods in several northeastern US cities. In this work, we leveraged a nearly five-year record of observations from a dense tower network coupled with a newly developed high-resolution emissions map to quantify methane emission rates in Washington, DC, and Baltimore, Maryland. Annual emissions averaged over 2018-2021 were 80.1 [95% CI: 61.2, 98.9] Gg in the Washington, DC urban area and 47.4 [95% CI: 35.9, 58.5] Gg in the Baltimore urban area, with a decreasing trend of approximately 4-5% per year in both cities. We also find wintertime emissions 44% higher than summertime emissions, correlating with natural gas consumption. We further attribute a large fraction of total methane emissions to the natural gas sector using a least-squares regression on our spatially resolved estimates, supporting previous findings that natural gas systems emit the plurality of methane in both cities. This study contributes to the relatively sparse existing knowledge base of urban methane emissions sources and variability, adding to our understanding of how these emissions change in time and providing evidence to support efforts to mitigate natural gas emissions.


Assuntos
Poluentes Atmosféricos , Metano , Cidades , Metano/análise , Gás Natural/análise , Poluentes Atmosféricos/análise , Baltimore
3.
Environ Sci Technol ; 56(4): 2172-2180, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35080873

RESUMO

We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a-1 since 2015 or ≈-3.1 % a-1 since 2016. In addition, we found that CO emissions show a "Sunday" effect, with emissions being lower, on average, than for the rest of the week and that the seasonal cycle is no larger than 16 %. Our results also show that the trend derived from the NEI agrees well with the observed trend, but that NEI daytime-adjusted emissions are ≈50 % larger than our estimated emissions. In 2020, measurements collected during the shutdown in activity related to the COVID-19 pandemic indicate a significant drop in CO emissions of 16 % relative to the expected emissions trend from the previous years, or 23 % relative to the mean of 2016 to February 2020. Our results also indicate a larger reduction in April than in May. Last, we show that this reduction in CO emissions was driven mainly by a reduction in traffic.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Baltimore , Monóxido de Carbono , District of Columbia , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2 , Emissões de Veículos/análise
4.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34149111

RESUMO

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

5.
Environ Sci Technol ; 54(5): 2606-2614, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045524

RESUMO

Since greenhouse gas mitigation efforts are mostly being implemented in cities, the ability to quantify emission trends for urban environments is of paramount importance. However, previous aircraft work has indicated large daily variability in the results. Here we use measurements of CO2, CH4, and CO from aircraft over 5 days within an inverse model to estimate emissions from the DC-Baltimore region. Results show good agreement with previous estimates in the area for all three gases. However, aliasing caused by irregular spatiotemporal sampling of emissions is shown to significantly impact both the emissions estimates and their variability. Extensive sensitivity tests allow us to quantify the contributions of different sources of variability and indicate that daily variability in posterior emissions estimates is larger than the uncertainty attributed to the method itself (i.e., 17% for CO2, 24% for CH4, and 13% for CO). Analysis of hourly reported emissions from power plants and traffic counts shows that 97% of the daily variability in posterior emissions estimates is explained by accounting for the sampling in time and space of sources that have large hourly variability and, thus, caution must be taken in properly interpreting variability that is caused by irregular spatiotemporal sampling conditions.


Assuntos
Poluentes Atmosféricos , Baltimore , Dióxido de Carbono , Cidades , District of Columbia , Metano
6.
Environ Sci Technol ; 53(1): 287-295, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520634

RESUMO

Urban areas contribute approximately three-quarters of fossil fuel derived CO2 emissions, and many cities have enacted emissions mitigation plans. Evaluation of the effectiveness of mitigation efforts will require measurement of both the emission rate and its change over space and time. The relative performance of different emission estimation methods is a critical requirement to support mitigation efforts. Here we compare results of CO2 emissions estimation methods including an inventory-based method and two different top-down atmospheric measurement approaches implemented for the Indianapolis, Indiana, U.S.A. urban area in winter. By accounting for differences in spatial and temporal coverage, as well as trace gas species measured, we find agreement among the wintertime whole-city fossil fuel CO2 emission rate estimates to within 7%. This finding represents a major improvement over previous comparisons of urban-scale emissions, making urban CO2 flux estimates from this study consistent with local and global emission mitigation strategy needs. The complementary application of multiple scientifically driven emissions quantification methods enables and establishes this high level of confidence and demonstrates the strength of the joint implementation of rigorous inventory and atmospheric emissions monitoring approaches.


Assuntos
Poluentes Atmosféricos , Dióxido de Carbono , Cidades , Combustíveis Fósseis , Indiana
7.
Adv Atmos Sci ; 34(9): 1095-1105, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29170575

RESUMO

The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k-means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

8.
Environ Sci Technol ; 50(16): 8910-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27487422

RESUMO

This paper describes process-based estimation of CH4 emissions from sources in Indianapolis, IN and compares these with atmospheric inferences of whole city emissions. Emissions from the natural gas distribution system were estimated from measurements at metering and regulating stations and from pipeline leaks. Tracer methods and inverse plume modeling were used to estimate emissions from the major landfill and wastewater treatment plant. These direct source measurements informed the compilation of a methane emission inventory for the city equal to 29 Gg/yr (5% to 95% confidence limits, 15 to 54 Gg/yr). Emission estimates for the whole city based on an aircraft mass balance method and from inverse modeling of CH4 tower observations were 41 ± 12 Gg/yr and 81 ± 11 Gg/yr, respectively. Footprint modeling using 11 days of ethane/methane tower data indicated that landfills, wastewater treatment, wetlands, and other biological sources contribute 48% while natural gas usage and other fossil fuel sources contribute 52% of the city total. With the biogenic CH4 emissions omitted, the top-down estimates are 3.5-6.9 times the nonbiogenic city inventory. Mobile mapping of CH4 concentrations showed low level enhancement of CH4 throughout the city reflecting diffuse natural gas leakage and downstream usage as possible sources for the missing residual in the inventory.


Assuntos
Poluentes Atmosféricos , Metano , Indiana , Gás Natural , Instalações de Eliminação de Resíduos
9.
Environ Sci Technol ; 49(8): 5161-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25826444

RESUMO

Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.


Assuntos
Monitoramento Ambiental/métodos , Metano/análise , Gás Natural , Poluentes Atmosféricos/análise , Gás Natural/análise , Estados Unidos
10.
Sci Data ; 9(1): 361, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750672

RESUMO

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

11.
Earth Space Sci ; 8(7): e2020EA001272, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435077

RESUMO

We present and discuss the use of a high-dimensional computational method for atmospheric inversions that incorporates the space-time structure of transport and dispersion errors. In urban environments, transport and dispersion errors are largely the result of our inability to capture the true underlying transport of greenhouse gas (GHG) emissions to observational sites. Motivated by the impact of transport model error on estimates of fluxes of GHGs using in situ tower-based mole-fraction observations, we specifically address the need to characterize transport error structures in high-resolution large-scale inversion models. We do this using parametric covariance functions combined with shrinkage-based regularization methods within an Ensemble Transform Kalman Filter inversion setup. We devise a synthetic data experiment to compare the impact of transport and dispersion error component of the model-data mismatch covariance choices on flux retrievals and study the robustness of the method with respect to fewer observational constraints. We demonstrate the analysis in the context of inferring CO2 fluxes starting with a hypothesized prior in the Washington D.C. /Baltimore area constrained by a synthetic set of tower-based CO2 measurements within an observing system simulation experiment framework. This study demonstrates the ability of these simple covariance structures to substantially improve the estimation of fluxes over standard covariance models in flux estimation from urban regions.

12.
Atmos Chem Phys ; 21(8)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36873665

RESUMO

As city governments take steps towards establishing emissions reduction targets, the atmospheric research community is increasingly able to assist in tracking emissions reductions. Researchers have established systems for observing atmospheric greenhouse gases in urban areas with the aim of attributing greenhouse gas concentration enhancements (and thus, emissions) to the region in question. However, to attribute enhancements to a particular region, one must isolate the component of the observed concentration attributable to fluxes inside the region by removing the background, which is the component due to fluxes outside. In this study, we demonstrate methods to construct several versions of a background for our carbon dioxide and methane observing network in the Washington, DC and Baltimore, MD metropolitan region. Some of these versions rely on transport and flux models, while others are based on observations upwind of the domain. First, we evaluate the backgrounds in a synthetic data framework, then we evaluate against real observations from our urban network. We find that backgrounds based on upwind observations capture the variability better than model-based backgrounds, although care must be taken to avoid bias from biospheric carbon dioxide fluxes near background stations in summer. Model-based backgrounds also perform well when upwind fluxes can be modeled accurately. Our study evaluates different background methods and provides guidance determining background methodology that can impact the design of urban monitoring networks.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33488312

RESUMO

Accurate simulation of planetary boundary layer height (PBLH) is key to greenhouse gas emission estimation, air quality prediction and weather forecasting. This manuscript describes an extensive performance assessment of several Weather Research and Forecasting (WRF) model configurations where novel observations from ceilometers, surface stations and a flux tower were used to study their ability to reproduce planetary boundary layer heights (PBLH) and the impact that the urban heat island (UHI) has on the modeled PBLHs in the greater Washington, D.C. area. In addition, CO2 measurements at two urban towers were compared to tracer transport simulations. The ensemble of models used 4 PBL parameterizations, 2 sources of initial and boundary conditions and 1 configuration including the building energy parameterization (BEP) urban canopy model. Results have shown low biases over the whole domain and period for wind speed, wind direction and temperature with no drastic differences between meteorological drivers. We find that PBLH errors are mostly positively correlated with sensible heat flux errors, and that modeled positive UHI intensities are associated with deeper modeled PBLs over the urban areas. In addition, we find that modeled PBLHs are typically biased low during nighttime for most of the configurations with the exception of those using the MYNN parametrization and that these biases directly translate to tracer biases. Overall, the configurations using MYNN scheme performed the best, reproducing the PBLH and CO2 molar fractions reasonably well during all hours, thus opening the door to future nighttime inverse modeling.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33133298

RESUMO

We present the organization, structure, instrumentation, and measurements of the Northeast Corridor greenhouse gas observation network. This network of tower-based in situ carbon dioxide and methane observation stations was established in 2015 with the goal of quantifying emissions of these gases in urban areas in the northeastern United States. A specific focus of the network is the cities of Baltimore, MD, and Washington, DC, USA, with a high density of observation stations in these two urban areas. Additional observation stations are scattered throughout the northeastern US, established to complement other existing urban and regional networks and to investigate emissions throughout this complex region with a high population density and multiple metropolitan areas. Data described in this paper are archived at the National Institute of Standards and Technology and can be found at https://doi.org/10.18434/M32126 (Karion et al., 2019).

15.
Artigo em Inglês | MEDLINE | ID: mdl-31275365

RESUMO

Greenhouse gas emissions mitigation requires understanding the dominant processes controlling fluxes of these trace gases at increasingly finer spatial and temporal scales. Trace gas fluxes can be estimated using a variety of approaches that translate observed atmospheric species mole fractions into fluxes or emission rates, often identifying the spatial and temporal characteristics of the emission sources as well. Meteorological models are commonly combined with tracer dispersion models to estimate fluxes using an inverse approach that optimizes emissions to best fit the trace gas mole fraction observations. One way to evaluate the accuracy of atmospheric flux estimation methods is to compare results from independent methods, including approaches in which different meteorological and tracer dispersion models are used. In this work, we use a rich data set of atmospheric methane observations collected during an intensive airborne campaign to compare different methane emissions estimates from the Barnett Shale oil and natural gas production basin in Texas, USA. We estimate emissions based on a variety of different meteorological and dispersion models. Previous estimates of methane emissions from this region relied on a simple model (a mass balance analysis) as well as on ground-based measurements and statistical data analysis (an inventory). We find that in addition to meteorological model choice, the choice of tracer dispersion model also has a significant impact on the predicted down-wind methane concentrations given the same emissions field. The dispersion models tested often underpredicted the observed methane enhancements with significant variability (up to a factor of 3) between different models and between different days. We examine possible causes for this result and find that the models differ in their simulation of vertical dispersion, indicating that additional work is needed to evaluate and improve vertical mixing in the tracer dispersion models commonly used in regional trace gas flux inversions.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30997362

RESUMO

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX's scientific objectives are to quantify CO2 and CH4 emission rates at 1 km resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA