Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
J Neuroinflammation ; 21(1): 50, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365833

RESUMO

BACKGROUND: Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain's resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that captures AD patient-specific microglial characteristics using physiologically relevant and experimentally flexible culture conditions. METHODS: To address this shortcoming, we developed novel 3D Matrigel-based monocyte-derived microglia-like cell (MDMi) mono-cultures and co-cultures with neuro-glial cells (ReNcell VM). We used single-cell RNA sequencing (scRNAseq) analysis to compare the transcriptomic signatures of MDMi between model systems (2D, 3D and 3D co-culture) and against published human microglia datasets. To demonstrate the potential of MDMi for use in personalized pre-clinical strategies, we generated and characterized MDMi models from sixteen AD patients and matched healthy controls, and profiled cytokine responses upon treatment with anti-inflammatory drugs (dasatinib and spiperone). RESULTS: MDMi in 3D exhibited a more branched morphology and longer survival in culture compared to 2D. scRNAseq uncovered distinct MDMi subpopulations that exhibit higher functional heterogeneity and best resemble human microglia in 3D co-culture. AD MDMi in 3D co-culture showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-ß. Drug testing assays revealed patient- and model-specific cytokine responses. CONCLUSION: Our study presents a novel, physiologically relevant and AD patient-specific 3D microglia cell model that opens avenues towards improving personalized drug development strategies in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia/metabolismo , Neuroglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo
2.
Neurobiol Dis ; 170: 105753, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569719

RESUMO

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuron-supporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Camundongos , Mitofagia , Neurônios/metabolismo
3.
J Neuroinflammation ; 19(1): 58, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227277

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia. METHODS: In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls. RESULTS: We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression. CONCLUSIONS: Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/patologia , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Humanos , Microglia/metabolismo , Monócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fagocitose
4.
Pharm Res ; 39(3): 427-439, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35257286

RESUMO

The blood-brain barrier (BBB) has a major protective function in preventing the entry of harmful molecules into the brain, but is simultaneously limiting the delivery of drugs, restricting their potential clinical application in neurodegenerative diseases. Recent preclinical evidence demonstrates that following application of focused ultrasound with microbubbles (FUS+MB), the BBB becomes reversibly accessible to compounds that normally are brain-impermeable, suggesting FUS+MB as a promising new platform for delivery of therapeutic agents into the central nervous system. As a step towards translation, small cohort clinical studies were performed demonstrating safe BBB opening in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS) patients following FUS+MB, however improved drug delivery has not yet been achieved in human. Simultaneously, rapid progress in the human induced pluripotent stem cell (hiPSC) modeling technology allowed for development of novel Alzheimer's disease patient-derived BBB in vitro model that reacts to FUS+MB with BBB opening and can be used to answer fundamental questions of human BBB responses to FUS+MB in health and disease. This review summarizes key features of the BBB that contribute to limited drug delivery, recapitulates recent advances in the FUS+MB mediated human BBB opening in vivo and in vitro in the context of neurodegenerative disorders, and highlights potential strategies for fast-track translation of the FUS+MB to improve bioavailability of drugs to the human brain. With safe and effective application, this innovative FUS+MB technology may open new avenues for therapeutic interventions in neurodegenerative diseases leading to improved clinical outcomes for patients.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Humanos , Microbolhas , Doenças Neurodegenerativas/tratamento farmacológico
5.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456941

RESUMO

Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.


Assuntos
Doença de Alzheimer , Oligoelementos , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Quelantes/metabolismo , Humanos , Mucosa Olfatória/metabolismo , Oligoelementos/metabolismo , Zinco/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142627

RESUMO

Neuroinflammation has a major role in several brain disorders including Alzheimer's disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecular-weight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone-pyridylhydrazone copper(II) complex (CuL5), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer's disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.


Assuntos
Doença de Alzheimer , Tiossemicarbazonas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Fatores Quimiotáticos/metabolismo , Complexos de Coordenação , Cobre/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Metalotioneína/metabolismo , Camundongos , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Biometals ; 34(4): 947-954, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089433

RESUMO

Trace elements have important functions in several processes involved in cellular homeostasis and survival. Dysfunctional metal ion homeostasis can make an important impact on cellular defence mechanisms. We assessed the concentrations of 23 trace minerals in different tissues (brain, spleen, heart and liver) of Fmr1 knockout (KO) mice that display the main phenotype of Fragile X syndrome (FXS), an intellectual disability syndrome and the best-known monogenic model of autism spectrum disorder (ASD). Altogether, seven minerals-Cu, Fe, K, Mg, Mn, Na, and P-were above the detection limit with the analysis revealing increased iron content in the heart of Fmr1 KO mice. In addition, levels of iron were higher in the cerebellum of the transgenic mouse when compared to wild type controls. These results implicate a role for dysregulated iron homeostasis in FXS tissues and suggest that defective iron-related mechanisms contribute to increased tissue vulnerability in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Coração , Ferro/análise , Animais , Ferro/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout
8.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445419

RESUMO

Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.


Assuntos
Doença de Alzheimer/reabilitação , Encéfalo/metabolismo , Ferro/metabolismo , Músculo Esquelético/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Exercício Físico , Regulação da Expressão Gênica , Hepcidinas/metabolismo , Homeostase , Humanos , Interleucina-6/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Comportamento Sedentário
9.
Part Fibre Toxicol ; 17(1): 18, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487172

RESUMO

BACKGROUND: The adverse effects of air pollutants including particulate matter (PM) on the central nervous system is increasingly reported by epidemiological, animal and post-mortem studies in the last decade. Oxidative stress and inflammation are key consequences of exposure to PM although little is known of the exact mechanism. The association of PM exposure with deteriorating brain health is speculated to be driven by PM entry via the olfactory system. How air pollutants affect this key entry site remains elusive. In this study, we investigated effects of urban size-segregated PM on a novel cellular model: primary human olfactory mucosal (hOM) cells. RESULTS: Metabolic activity was reduced following 24-h exposure to PM without evident signs of toxicity. Results from cytometric bead array suggested a mild inflammatory response to PM exposure. We observed increased oxidative stress and caspase-3/7 activity as well as perturbed mitochondrial membrane potential in PM-exposed cells. Mitochondrial dysfunction was further verified by a decrease in mitochondria-dependent respiration. Transient suppression of the mitochondria-targeted gene, neuronal pentraxin 1 (NPTX1), was carried out, after being identified to be up-regulated in PM2.5-1 treated cells via RNA sequencing. Suppression of NPTX1 in cells exposed to PM did not restore mitochondrial defects resulting from PM exposure. In contrast, PM-induced adverse effects were magnified in the absence of NPTX1, indicating a critical role of this protein in protection against PM effects in hOM cells. CONCLUSION: Key mitochondrial functions were perturbed by urban PM exposure in a physiologically relevant cellular model via a mechanism involving NPTX1. In addition, inflammatory response and early signs of apoptosis accompanied mitochondrial dysfunction during exposure to PM. Findings from this study contribute to increased understanding of harmful PM effects on human health and may provide information to support mitigation strategies targeted at air pollution.


Assuntos
Poluentes Atmosféricos/toxicidade , Mitocôndrias/efeitos dos fármacos , Mucosa Olfatória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Idoso , Animais , Apoptose/efeitos dos fármacos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Cidades , Citocinas/metabolismo , Humanos , Inflamação , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Tamanho da Partícula , Transcriptoma/efeitos dos fármacos , Urbanização
10.
Hum Mol Genet ; 26(9): 1732-1746, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334913

RESUMO

TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS.


Assuntos
Proteínas de Ligação a DNA , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Antioxidantes , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , RNA/metabolismo , Medula Espinal/metabolismo
11.
Inorg Chem ; 58(7): 4540-4552, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869878

RESUMO

The synthesis of new bis(thiosemicarbazonato)copper(II) complexes featuring polyamine substituents via selective transamination reactions is presented. Polyamines of different lengths, with different ionizable substituent groups, were used to modify and adjust the hydrophilic/lipophilic balance of the copper complexes. The new analogues were radiolabeled with copper-64 and their lipophilicities estimated using distribution coefficients. The cell uptake of the new polyamine complexes was investigated with preliminary in vitro biological studies using a neuroblastoma cancer cell line. The in vivo biodistribution of three of the new analogues was investigated in vivo in mice using positron-emission tomography imaging, and one of the new complexes was compared to [64Cu]Cu(atsm) in an A431 squamous cell carcinoma xenograft model. Modification of the copper complexes with various amine-containing functional groups alters the biodistribution of the complexes in mice. One complex, with a pendent ( N, N-dimethylamino)ethane functional group, displayed tumor uptake similar to that of [64Cu]Cu(atsm) but higher brain uptake, suggesting that this compound has the potential to be of use in the diagnostic brain imaging of tumors and neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Complexos de Coordenação/farmacocinética , Radioisótopos de Cobre/química , Poliaminas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tiossemicarbazonas/farmacocinética , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Feminino , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Poliaminas/síntese química , Poliaminas/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Distribuição Tecidual
12.
Hum Mol Genet ; 25(18): 4080-4093, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466204

RESUMO

Defects in the RNA-binding proteins survival motor neuron (SMN) and TAR DNA-binding protein 43 (TDP-43) cause progressive motor neuron degeneration in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. While low levels of SMN protein in motor neurons result in SMA, recent studies implicate abnormal SMN levels and function in ALS pathogenesis. Here, we determine that SMN protein is upregulated early and progressively in spinal and cortical motor neurons of male transgenic mutant TDP-43A315T mice. Cytoplasmic SMN aggregates that contain TDP-43 and HuR were identified in motor neurons of TDP-43A315T mice, consistent with the incorporation of SMN into stress granules. To test the impact of augmenting SMN levels in TDP-43 proteinopathy, we demonstrate that neuronal overexpression of human SMN in TDP-43A315T mice delayed symptom onset and prolonged survival. SMN upregulation also countered motor neuron degeneration, attenuated activation of astrocytes and microglia and restored AMP kinase activation in spinal cords of TDP-43A315T mice. We also reveal that expression of another factor conferring motor neuron vulnerability, androgen receptor (AR), is reduced in spinal cords of male TDP-43A315T mice. These results establish that SMN overexpression in motor neurons slows disease onset and outcome by ameliorating pathological signs in this model of mutant TDP-43-mediated ALS. Further approaches to augment SMN levels using pharmacological or gene therapy agents may therefore be warranted in ALS. Our data also reinforce a novel potential link between ALS and spinal bulbar muscular atrophy (SBMA), another motor neurodegenerative disease mediated by reduced AR function in motor neurons.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Citoplasma/genética , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Agregação Patológica de Proteínas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/biossíntese
14.
Hum Mol Genet ; 24(6): 1655-69, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25410660

RESUMO

Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Citosol/metabolismo , Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Camundongos , Mutação de Sentido Incorreto , Fosforilação
15.
Pharm Res ; 34(12): 2652-2662, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28952054

RESUMO

PURPOSE: Alzheimer's disease (AD) may disturb functions of the blood-brain barrier and change the disposition of drugs to the brain. This study assessed the disease-induced changes in drug transporters in the brain capillaries of transgenic AD mice. METHODS: Eighteen drug transporters and four tight junction-associated proteins were analyzed by RT-qPCR in cortex, hippocampus and cerebellum tissue samples of 12-16-month-old APdE9, Tg2576 and APP/PS1 transgenic mice and their healthy age-matched controls. In addition, microvessel fractions enriched from 1-3-month-old APdE9 mice were analyzed using RT-qPCR and Western blotting. Brain transport of methotrexate in APdE9 mice was assessed by in vivo microdialysis. RESULTS: The expression profiles of studied genes were similar in brain tissues of AD and control mice. Instead, in the microvessel fraction in APdE9 mice, >2-fold alterations were detected in the expressions of 11 genes but none at the protein level. In control mice strains, >5-fold changes between different brain regions were identified for Slc15a2, Slc22a3 and occludin. Methotrexate distribution into hippocampus of APdE9 mice was faster than in controls. CONCLUSIONS: The expression profile of mice carrying presenilin and amyloid precursor protein mutations is comparable to controls, but clear regional differences exist in the expression of drug transporters in brain.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Metotrexato/farmacocinética , Proteínas de Junções Íntimas/metabolismo , Doença de Alzheimer/genética , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Metotrexato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Preparações Farmacêuticas/metabolismo , Proteínas de Junções Íntimas/análise , Proteínas de Junções Íntimas/genética , Transcriptoma
16.
Bioorg Med Chem Lett ; 27(8): 1698-1704, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28285915

RESUMO

The death of dopaminergic neurons is a major pathological hallmark of Parkinson's disease (PD). Elevated iron within the substantia nigra of the PD brain is thought to catalyze this neuronal death through hydroxyl radical-derived oxidative damage. Removing this excess iron presents a potential therapeutic strategy for PD. Seventeen derivatives of the non-toxic iron chelator desferrioxamine B (DFOB) were prepared by the conjugation of adamantyl- (1-4, 8-12), deconstructed adamantyl units (5-7), norborna(e)ne- (13-16) or bicyclo[2.2.2]octane-based (17) ancillary fragments to the terminal amine group. The range of experimental logP values of 1-17 (logP=0.15-2.82) was greater than water soluble DFOB (logP -2.29), with the increased hydrophobicity designed to improve cell membrane carriage to facilitate intracellular iron sequestration. The first activity screen showed compounds with methyl-substituted adamantyl (1-3), noradamantyl (5), or 1-pentylbicyclo[2.2.2]octane (17) ancillary groups significantly rescued iron-mediated oxidative stress in confluent PD-relevant SK-N-BE2-M17 neuroblastoma cells (M17 cells) exposed to 1,1'-dimethyl-4,4'-bipyridinium (paraquat, PQ) or H2O2. The second dose-dependence screen ranked 1-3 and 17 as the top candidates (EC50 ∼10µM) in the rescue of PQ-treated M17 cells. The ancillary fragments of 1-3 and 17 clustered in a region defined by a close-to-zero dipole moment, logP values of 2-2.8 and a surface area:volume ratio of 0.60-0.61. Results of iron leaching studies indicate that the compounds may be operating via mechanisms beyond solely removing intracellular iron. The DFOB conjugates with methyl-substituted adamantyl ancillary groups (1-3) were the top and most consistent performers in this class of compound designed for PD.


Assuntos
Desferroxamina/análogos & derivados , Desferroxamina/farmacologia , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Doença de Parkinson/tratamento farmacológico , Astrócitos/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Doença de Parkinson/metabolismo , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia
17.
Hum Mol Genet ; 23(15): 4051-63, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24634145

RESUMO

All cases of Huntington's disease (HD) are caused by mutant huntingtin protein (mhtt), yet the molecular mechanisms that link mhtt to disease symptoms are not fully elucidated. Given glycogen synthase kinase-3 (GSK3) is implicated in several neurodegenerative diseases as a molecular mediator of neuronal decline and widely touted as a therapeutic target, we investigated GSK3 in cells expressing mhtt, brains of R6/1 HD mice and post-mortem human brain samples. Consistency in data across the two models and the human brain samples indicate decreased GSK3 signalling contributes to neuronal dysfunction in HD. Inhibitory phosphorylation of GSK3 (pGSK3) was elevated in mhtt cells and this appeared related to an overall energy metabolism deficit as the mhtt cells had less ATP and inhibiting ATP production in control cells expressing non-pathogenic htt with paraquat also increased pGSK3. pGSK3 was increased and ATP levels decreased in the frontal cortex and striatum of R6/1 mice and levels of cortical pGSK3 inversely correlated with cognitive function of the mice. Consistent with decreased GSK3 activity in the R6/1 mouse brain, ß-catenin levels were increased and phosphorylation of collapsin response mediator protein-2 (CRMP2) decreased in the frontal cortex where inhibitory phosphorylation of GSK3 was the greatest. pGSK3 was predominantly undetectable in HD and healthy control human brain samples, but levels of total GSK3 were decreased in the HD-affected frontal cortex and this correlated with decreased pCRMP2. Thus, disruptions to cortical GSK3 signalling, possibly due to localized energy metabolism deficits, appear to contribute to the cognitive symptoms of HD.


Assuntos
Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Doença de Huntington/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Trifosfato de Adenosina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Paraquat/farmacologia , Fosforilação , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
18.
J Neuroinflammation ; 13: 49, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26920699

RESUMO

BACKGROUND: Endogenous defense against oxidative stress is controlled by nuclear factor erythroid 2-related factor 2 (Nrf2). The normal compensatory mechanisms to combat oxidative stress appear to be insufficient to protect against the prolonged exposure to reactive oxygen species during disease. Counterbalancing the effects of oxidative stress by up-regulation of Nrf2 signaling has been shown to be effective in various disease models where oxidative stress is implicated, including Alzheimer's disease. Stimulation of Nrf2 signaling by small-molecule activators is an appealing strategy to up-regulate the endogenous defense mechanisms of cells. METHODS: Here, we investigate Nrf2 induction by the metal chelator and known nuclear factor-κB inhibitor pyrrolidine dithiocarbamate (PDTC) in cultured astrocytes and neurons, and mouse brain. Nrf2 induction is further examined in cultures co-treated with PDTC and kinase inhibitors or amyloid-beta, and in Nrf2-deficient cultures. RESULTS: We show that PDTC is a potent inducer of Nrf2 signaling specifically in astrocytes and demonstrate the critical role of Nrf2 in PDTC-mediated protection against oxidative stress. This induction appears to be regulated by both Keap1 and glycogen synthase kinase 3ß. Furthermore, the presence of amyloid-beta magnifies PDTC-mediated induction of endogenous protective mechanisms, therefore suggesting that PDTC may be an effective Nrf2 inducer in the context of Alzheimer's disease. Finally, we show that PDTC increases brain copper content and glial expression of heme oxygenase-1, and decreases lipid peroxidation in vivo, promoting a more antioxidative environment. CONCLUSIONS: PDTC activates Nrf2 and its antioxidative targets in astrocytes but not neurons. These effects may contribute to the neuroprotection observed for PDTC in models of Alzheimer's disease.


Assuntos
Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glutamato-Cisteína Ligase/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Neurônios/efeitos dos fármacos , Oxigenases/metabolismo
19.
J Neurosci ; 34(23): 8021-31, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24899723

RESUMO

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.


Assuntos
Esclerose Lateral Amiotrófica , Neurônios Motores/efeitos dos fármacos , Mutação/genética , Compostos Organometálicos/administração & dosagem , Superóxido Dismutase/genética , Tiossemicarbazonas/administração & dosagem , Administração Oral , Fatores Etários , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Transporte de Cátions/genética , Cromatografia em Gel , Complexos de Coordenação , Transportador de Cobre 1 , Modelos Animais de Doenças , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
20.
J Biol Chem ; 289(16): 11007-11019, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24610780

RESUMO

Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-ß (GSK3ß) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3ß kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3ß-dependent phosphorylation in SH-SY5Y cells.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Axônios/metabolismo , Cobre/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Adjuvantes Imunológicos/farmacologia , Aminofenóis/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Hipocampo/citologia , Humanos , Indóis/farmacologia , Cloreto de Lítio/farmacologia , Maleimidas/farmacologia , Camundongos , Mutação de Sentido Incorreto , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA