Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
J Neurochem ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183580

RESUMO

This is a tribute to Arne Schousboe, Professor Emeritus at the University of Copenhagen, an eminent neurochemist and neuroscientist who was a leader in the fields of GABA, glutamate, and brain energy metabolism. Arne was known for his keen intellect, his wide-ranging expertise in neurochemistry and neuropharmacology of GABA and glutamate and brain energy metabolism. Arne was also known for his strong leadership, his warm and engaging personality and his enjoyment of fine wine and great food shared with friends, family, and colleagues. Sadly, Arne passed away on February 27, 2024, after a short illness. He is survived by his wife Inger Schousboe, his two children, and three wonderful grandchildren. His death is a tremendous loss to the neuroscience community. He will be greatly missed by his friends, family, and colleagues. Some of the highlights of Arne's career are described in this tribute.

2.
Epilepsia ; 65(2): 497-510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031477

RESUMO

OBJECTIVE: Poor medication adherence remains a concern for individuals managing their epilepsy with antiseizure medicines (ASMs); however, ethical concerns around withholding medication make it impossible to study the causal relationship between missed doses and seizures in patients. Previous preclinical studies from our group suggest that mechanistically distinct ASMs have varying degrees of forgiveness when a dose is missed. However, with only a few ASMs studied in the context of nonadherence, we sought to expand on previous work to understand the relationship between levetiracetam (LEV) nonadherence and breakthrough seizures. METHODS: Chronic oral dosing was initiated in rats with established epilepsy via our automated medication-in-food delivery system coupled to 24/7 video-electroencephalographic recording. Baseline seizure burden was established for 4 weeks before enrolling subjects into a 4-week treatment period with LEV in a 100% fully adherent (75 mg/kg four times daily) or 50% variably adherent paradigm. The temporal relationship between missed doses and breakthrough seizures was correlated with LEV plasma and brain concentrations in separate cohorts of animals. RESULTS: Full adherence to LEV significantly improved seizure control by 50% in half of the animals. Poor adherence worsened seizure frequency by 85%, with most rats having more severe seizures that formed in clusters following missed doses. LEV concentrations remained below therapeutic levels (<10 µg/mL) in nonadherent animals, with brain and plasma levels directly correlating with the degree of adherence in a 24-h period. Missed doses of LEV immediately increased the risk of breakthrough seizures; however, this risk was significantly reduced with improved adherence in a 24-h period. SIGNIFICANCE: These findings enhance our understanding of ASM nonadherence in preclinical models, highlighting that the timing of missed doses and their impact on seizures may vary between different ASMs. Notably, LEV demonstrates a robust pharmacokinetic reliance on missed doses leading to breakthrough seizures.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Ratos , Animais , Levetiracetam/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente , Anticonvulsivantes/efeitos adversos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico
3.
Epilepsia ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171993

RESUMO

The 17th Eilat Conference on New Antiepileptic Drugs and Devices took place in Madrid, Spain on May 5-8, 2024. As usual, the core part of the conference consisted of presentations on investigational drugs at various stages of development for epilepsy-related indications. Summaries of information on compounds in preclinical or early clinical development are included in an accompanying publication (Part I). In this article, we provide summaries for five compounds in more advanced clinical development, i.e. compounds for which some information on antiseizure activity in individuals with epilepsy is available. These investigational treatments include azetukalner (XEN1101), a potent, KV7.2/7.3-specific potassium channel opener in development for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder; bexicaserin (LP352), a selective 5-HT2C receptor superagonist in development for the treatment of seizures associated with developmental and epileptic encephalopathies; radiprodil, a selective negative allosteric modulator of NR2B subunit-containing N-methyl-D-aspartate glutamate receptors, in development for the treatment of seizures and behavior manifestations associated with disorders caused by gain-of-function mutations in the GRIN1, -2A, -2B, or -2D genes; soticlestat (TAK-935), a selective inhibitor of cholesterol 24-hydroxylase in development for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome; and STK-001, an antisense oligonucleotide designed to upregulate Nav1.1 protein expression and improve outcomes in individuals with Dravet syndrome. The diversity in mechanisms of action of these agents illustrates different approaches being pursued in the discovery of novel treatments for seizures and epilepsy. For two of the compounds discussed in this report (azetukalner and soticlestat), clinical evidence of efficacy has already been obtained in a randomized placebo-controlled adjunctive-therapy trial. For the other compounds, adequately powered placebo-controlled efficacy trials have not been completed to date.

4.
Epilepsia ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008349

RESUMO

For >30 years, the Eilat Conference on New Antiepileptic Drugs and Devices has provided a forum for the discussion of advances in the development of new therapies for seizures and epilepsy. The EILAT XVII conference took place in Madrid, Spain, on May 5-8, 2024. Participants included basic scientists and clinical investigators from industry and academia, other health care professionals, and representatives from lay organizations. We summarize in this article information on treatments in preclinical and in early clinical development discussed at the conference. These include AMT-260, a gene therapy designed to downregulate the expression of Glu2K subunits of kainate receptors, in development for the treatment of drug-resistant seizures associated with mesial temporal sclerosis; BHV-7000, a selective activator of heteromeric Kv7.2/7.3 potassium channels, in development for the treatment of focal epilepsy; ETX101, a recombinant adeno-associated virus serotype 9 designed to increase NaV1.1 channel density in inhibitory γ-aminobutyric acidergic (GABAergic) neurons, in development for the treatment of SCN1A-positive Dravet syndrome; GAO-3-02, a compound structurally related to synaptamide, which exerts antiseizure activity at least in part through an action on cannabinoid type 2 receptors; LRP-661, a structural analogue of cannabidiol, in development for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex; OV329, a selective inactivator of GABA aminotransferase, in development for the treatment of drug-resistant seizures; PRAX-628, a functionally selective potent sodium channel modulator with preference for the hyperexcitable state of sodium channels, in development for the treatment of focal seizures; RAP-219, a selective negative allosteric modulator of transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory protein γ-8, in development for the treatment of focal seizures; and rozanolixizumab, a humanized anti-neonatal Fc receptor monoclonal antibody, in development for the treatment of LGI1 autoimmune encephalitis. Treatments in more advanced development are summarized in Part II of this report.

5.
Epilepsia ; 65(6): 1777-1790, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491947

RESUMO

OBJECTIVE: Brain infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can induce acquired epileptogenesis. Diet alters acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet formulation and sterilization on acute seizure presentation, gut microbiome composition, and epilepsy-related chronic behavioral comorbidities. METHODS: Baseline fecal samples were collected from male C57BL/6J mice (4- to 5-weeks-old; Jackson Labs) upon facility arrival. Mice were randomized to either autoclaved (AC) or irradiated diet (IR) (Prolab RMH 3000) or IR (Picolab 5053). Three days later, mice underwent intracerebral TMEV or phosphate-buffered saline (PBS) injection. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. RESULTS: TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28 of 57 IR Picolab 5053 (49.1%), 30 of 41 IR Prolab RMH 3000 (73.2%), and 47 of 77 AC Prolab RMH 3000 (61%) mice displayed seizures. The number of observed seizures differed significantly by diet: IR Picolab 5053 diet-fed mice had 2.2 ± 2.8 seizures (mean ± standard deviation), IR Prolab RMH 3000 diet-fed mice had 3.5 ± 2.9 seizures, and AC Prolab RMH 3000 diet-fed mice had 4.4 ± 3.8 seizures during the 7-day monitoring period. Gut microbiome composition differed significantly in TMEV-infected mice fed the AC Prolab RMH 3000 diet, with measured differences in gram-positive bacteria. These mice also displayed worsened long-term working memory deficits. SIGNIFICANCE: Diet-induced differences in intestinal dysbiosis in the TMEV model are associated with marked changes in acute seizure presentation, symptomatic recovery, and onset of chronic behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying impact of dietary manipulation on intestinal bacterial species after TMEV-induced acute seizures.


Assuntos
Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Convulsões , Theilovirus , Animais , Camundongos , Convulsões/etiologia , Masculino , Dieta , Infecções por Cardiovirus , Esterilização/métodos , Fezes/microbiologia , Doença Aguda
6.
J Transl Med ; 21(1): 642, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730661

RESUMO

BACKGROUND: Poor medication adherence contributes to increased morbidity and mortality in patients with epilepsy and may be under-addressed in clinical practice. Ethical concerns make it impossible to study the impact of medication nonadherence in clinical trials, but our previous work emphasizes the importance of using preclinical approaches to address these questions. With over 30 clinically available antiseizure medicines (ASM's), it remains an important question to understand the relationship between poor adherence and seizure incidence across mechanistically distinct ASM's, including the broad-spectrum ASM, perampanel (PER). METHODS: We formulated PER into chow pellets to deliver to rats in a 100% fully adherent or 50% variable nonadherent paradigm via our novel automated medication-in-food delivery system. Chronic oral dosing was initiated in male rats with chronic epilepsy while monitoring 24/7 for videoEEG evidence of seizures during a 4-week placebo baseline and 4-week treatment phase. PER concentrations were monitored in plasma at 1-week intervals and correlated with degree of seizure control. The relationship between missed doses and extended patterns of nonadherence were correlated with breakthrough seizures. RESULTS: Fully adherent rats demonstrated a median reduction in seizure frequency of 50%, whereas nonadherent rats had a median increase of 54%. Plasma concentrations of PER were stable over the 4-week treatment period in both fully adherent and nonadherent groups, with levels being twice as high in fully adherent animals. There was no correlation between a single missed dose or series of missed doses and the incidence of breakthrough seizures. However, those animals in the nonadherent group that received PER for every meal during a 24-h period had a reduced likelihood of seizure incidence. CONCLUSIONS: If our preclinical data is supported in the clinic, PER's favorable pharmacokinetic profile in humans, combined with a lowered risk of breakthrough seizures suggests that it may provide a certain forgiveness factor if a dose is missed within a 24-h window.


Assuntos
Epilepsia , Perdão , Humanos , Masculino , Animais , Ratos , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Adesão à Medicação
7.
Epilepsia ; 63(12): 3090-3099, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177529

RESUMO

OBJECTIVE: The use of many antiseizure medications (ASMs) is limited due to pharmacoresistance and dose-limiting side effects, suggesting an unmet need for novel therapeutic approaches. The neuropeptide galanin reduces seizures in several preclinical seizure and epilepsy models, but its clinical utility is limited due to rapid metabolism and poor blood-brain barrier penetration. The lead galanin analog 810-2 is systemically bioavailable and reduces seizures when administered alone. Further development of this analog, with the potential for use as an add-on therapy in patients with epilepsy, requires a better understanding of the use of this analog in combination with approved ASMs. We sought to evaluate 810-2 in combination with commonly used ASMs in rodent models of seizures. METHODS: The mouse 6-Hz seizure assay was used to test efficacy of 810-2 in combination with levetiracetam (LEV), valproic acid (VPA), or lacosamide (LCM) using a 1:1 dose ratio in isobolographic studies. Further characterization was performed for the combination of 810-2 and LEV in the mouse corneal kindling and rat 6-Hz assays. RESULTS: Whereas the combination of 810-2 with VPA and LCM yielded additive interactions, the combination of 810-2 with LEV demonstrated a synergistic interaction in the mouse 6-Hz assay. Supra-additive effects were also observed in the mouse corneal kindling and rat 6-Hz assays for this combination. SIGNIFICANCE: The combination of 810-2 with LEV suggests the potential for this galanin analog to be further developed as an add-on therapy for patients with epilepsy, particularly when coadministered with LEV.


Assuntos
Epilepsia , Roedores , Camundongos , Ratos , Animais , Levetiracetam , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico
8.
Epilepsia ; 63(11): 2865-2882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35946083

RESUMO

The Eilat Conferences have provided a forum for discussion of novel treatments of epilepsy among basic and clinical scientists, clinicians, and representatives from regulatory agencies as well as from the pharmaceutical industry for 3 decades. Initially with a focus on pharmacological treatments, the Eilat Conferences now also include sessions dedicated to devices for treatment and monitoring. The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain, on May 22-25, 2022 and was attended by 157 delegates from 26 countries. As in previous Eilat Conferences, the core of EILAT XVI consisted of a sequence of sessions where compounds under development were presented and discussed. This progress report summarizes preclinical and, when available, phase 1 clinical data on five different investigational compounds in preclinical or early clinical development, namely GAO-3-02, GRT-X, NBI-921352 (formerly XEN901), OV329, and XEN496 (a pediatric granular formulation of retigabine/ezogabine). Overall, the data presented in this report illustrate novel strategies for developing antiseizure medications, including an interest in novel molecular targets, and a trend to pursue potential new treatments for rare and previously neglected severe epilepsy syndromes.


Assuntos
Anticonvulsivantes , Epilepsia , Humanos , Criança , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Relatório de Pesquisa , Drogas em Investigação/uso terapêutico , Drogas em Investigação/farmacologia , Epilepsia/tratamento farmacológico
9.
Epilepsia ; 63(11): 2883-2910, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950617

RESUMO

The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.


Assuntos
Anticonvulsivantes , Relatório de Pesquisa , Humanos , Anticonvulsivantes/uso terapêutico , Preparações Farmacêuticas , Drogas em Investigação/uso terapêutico , Convulsões/tratamento farmacológico
10.
Epilepsia ; 63(6): 1580-1590, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316533

RESUMO

OBJECTIVE: The formation of 24S-hydroxycholesterol is a brain-specific mechanism of cholesterol catabolism catalyzed by cholesterol 24-hydroxylase (CYP46A1, also known as CH24H). CH24H has been implicated in various biological mechanisms, whereas pharmacological lowering of 24S-hydroxycholesterol has not been fully studied. Soticlestat is a novel small-molecule inhibitor of CH24H. Its therapeutic potential was previously identified in a mouse model with an epileptic phenotype. In the present study, the anticonvulsive property of soticlestat was characterized in rodent models of epilepsy that have long been used to identify antiseizure medications. METHODS: The anticonvulsive property of soticlestat was investigated in maximal electroshock seizures (MES), pentylenetetrazol (PTZ) acute seizures, 6-Hz psychomotor seizures, audiogenic seizures, amygdala kindling, PTZ kindling, and corneal kindling models. Soticlestat was characterized in a PTZ kindling model under steady-state pharmacokinetics to relate its anticonvulsive effects to pharmacodynamics. RESULTS: Among models of acutely evoked seizures, whereas anticonvulsive effects of soticlestat were identified in Frings mice, a genetic model of audiogenic seizures, it was found ineffective in MES, acute PTZ seizures, and 6-Hz seizures. The protective effects of soticlestat against audiogenic seizures increased with repetitive dosing. Soticlestat was also tested in models of progressive seizure severity. Soticlestat treatment delayed kindling acquisition, whereas fully kindled animals were not protected. Importantly, soticlestat suppressed the progression of seizure severity in correlation with 24S-hydroxycholesterol lowering in the brain, suggesting that 24S-hydroxycholesterol can be aggressively reduced to produce more potent effects on seizure development in kindling acquisition. SIGNIFICANCE: The data collectively suggest that soticlestat can ameliorate seizure symptoms through a mechanism distinct from conventional antiseizure medications. With its novel mechanism of action, soticlestat could constitute a novel class of antiseizure medications for treatment of intractable epilepsy disorders such as developmental and epileptic encephalopathy.


Assuntos
Epilepsia , Excitação Neurológica , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Colesterol 24-Hidroxilase/metabolismo , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Camundongos , Pentilenotetrazol/toxicidade , Piperidinas/farmacologia , Piridinas/farmacologia , Convulsões/tratamento farmacológico
11.
Epilepsia ; 62(3): 596-614, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580520

RESUMO

Since 1955, several alkyl-carbamates have been developed for the treatment of anxiety and epilepsy, including meprobamate, flupirtine, felbamate, retigabine, carisbamate, and cenobamate. They have each enjoyed varying levels of success as antiseizure drugs; however, they have all been plagued by the emergence of serious and sometimes life-threatening adverse events. In this review, we compare and contrast their predominant molecular mechanisms of action, their antiseizure profile, and where possible, their clinical efficacy. The preclinical, clinical, and mechanistic profile of the prototypical γ-aminobutyric acidergic (GABAergic) modulator phenobarbital is included for comparison. Like phenobarbital, all of the clinically approved alkyl-carbamates share an ability to enhance inhibitory neurotransmission through modulation of the GABAA receptor, although the specific mechanism of interaction differs among the different drugs discussed. In addition, several alkyl-carbamates have been shown to interact with voltage-gated ion channels. Flupirtine and retigabine share an ability to activate K+ currents mediated by KCNQ (Kv7) K+ channels, and felbamate, carisbamate, and cenobamate have been shown to block Na+ channels. In contrast to other alkyl-carbamates, cenobamate seems to be unique in its ability to preferentially attenuate the persistent rather than transient Na+ current. Results from recent randomized controlled clinical trials with cenobamate suggest that this newest antiseizure alkyl-carbamate possesses a degree of efficacy not witnessed since felbamate was approved in 1993. Given that ceno-bamate's mechanistic profile is unique among the alkyl-carbamates, it is not clear whether this impressive efficacy reflects an as yet undescribed mechanism of action or whether it possesses a unique synergy between its actions at the GABAA receptor and on persistent Na+ currents. The high efficacy of cenobamate is, however, tempered by the risk of serious rash and low tolerability at higher doses, meaning that further safety studies and clinical experience are needed to determine the true clinical value of cenobamate.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Clorofenóis/uso terapêutico , Epilepsia/tratamento farmacológico , Tetrazóis/uso terapêutico , Anticonvulsivantes/efeitos adversos , Carbamatos/efeitos adversos , Clorofenóis/efeitos adversos , Humanos , Tetrazóis/efeitos adversos , Resultado do Tratamento
12.
Epilepsia ; 62(12): 3076-3090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625953

RESUMO

OBJECTIVES: Benzodiazepines are the standard of care for the management of sustained seizure emergencies, including status epilepticus (SE) and seizure clusters. Seizure clusters are a variably defined seizure emergency wherein a patient has multiple seizures above a baseline rate, with intervening periods of recovery, distinguishing clusters from SE. Although these seizure emergencies are phenotypically distinct, the precise pathophysiological and mechanistic differences between SE and seizure clusters are understudied. Emergency-specific preclinical models may differentiate the behavioral and pathological mechanisms that are acutely associated with seizure emergencies and seizure termination to better manage these events. METHODS: Herein we characterize a novel model of sustained seizure emergency induced in CF-1 mice through the combined administration of high-dose phenytoin (PHT; 50 mg/kg, i.p.) and pentylenetetrazol (PTZ; 100 mg/kg, s.c.). RESULTS: We presently describe a mouse model of sustained seizure emergency that is pathologically, pharmacologically, and behaviorally distinct from SE. Acute administration of PHT 1 h prior to PTZ led to significantly more mice with unremitting continuous seizure activity (CSA; 73.4%) vs vehicle-pretreated mice (13.8%; p < .0001). CSA was sensitive to lorazepam and valproic acid when administered at seizure onset and 30 minutes later. Carbamazepine worsened seizure control and post-CSA survival. Mice in CSA exhibited electroencephalography (EEG) patterns distinct from kainic acid-induced SE and PTZ alone, clearly differentiating CSA from SE and PTZ-induced myoclonic seizures. Neuropathological assessment by Fluoro-Jade C staining of brains collected 24 h post-CSA revealed no neurodegeneration in any mouse that underwent CSA, whereas there was widespread neuronal death in brains from KA-SE mice. Finally, immunohistochemistry revealed acute seizure-induced astrogliosis (glial fibrillary acid protein; GFAP) in hippocampal structures, whereas hippocampal neuronal nuclei (NeuN) protein expression was only reduced in KA-SE mice. SIGNIFICANCE: We present a novel mouse model on which to further elucidate the mechanistic differences between sustained seizure emergencies (ie, SE and seizure clusters) to improve clinical interventions and define mechanisms of seizure termination.


Assuntos
Emergências , Estado Epiléptico , Animais , Modelos Animais de Doenças , Eletroencefalografia , Proteína Glial Fibrilar Ácida , Humanos , Ácido Caínico , Camundongos , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
13.
Epilepsia ; 62(7): 1677-1688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080183

RESUMO

OBJECTIVE: The kainic acid (KA)-induced status epilepticus (SE) model in rats is a well-defined model of epileptogenesis. This model closely recapitulates many of the clinical and pathological characteristics of human temporal lobe epilepsy (TLE) that arise following SE or another neurological insult. Spontaneous recurrent seizures (SRS) in TLE can present after a latent period following a neurological insult (traumatic brain injury, SE event, viral infection, etc.). Moreover, this model is suitable for preclinical studies to evaluate the long-term process of epileptogenesis and screen putative disease-modifying/antiepileptogenic agents. The burden of human TLE is highly variable, similar to the post-KA SE rat model. In this regard, this model may have broad translational relevance. This report thus details the pharmacological characterization and methodological refinement of a moderate-throughput drug screening program using the post-KA-induced SE model of epileptogenesis in male Sprague Dawley rats to identify potential agents that may prevent or modify the burden of SRS. Specifically, we sought to demonstrate whether our protocol could prevent the development of SRS or lead to a reduced frequency/severity of SRS. METHODS: Rats were administered either everolimus (2-3 mg/kg po) beginning 1, 2, or 24 h after SE onset, or phenobarbital (60 mg/kg ip) beginning 1 h after SE onset. All treatments were administered once/day for 5-7 days. Rats in all studies (n = 12/treatment dose/study) were then monitored intermittently by video-electroencephalography (2 weeks on, 2 weeks off, 2 weeks on epochs) to determine latency to onset of SRS and disease burden. RESULTS: Although no adverse side effects were observed in our studies, no treatment significantly modified disease or prevented the presentation of SRS by 6 weeks after SE onset. SIGNIFICANCE: Neither phenobarbital nor everolimus administered at several time points after SE onset prevented the development of SRS. Nonetheless, we demonstrate a practical and moderate-throughput screen for potential antiepileptogenic agents in a rat model of TLE.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia do Lobo Temporal/prevenção & controle , Everolimo/uso terapêutico , Fenobarbital/uso terapêutico , Animais , Anticonvulsivantes/efeitos adversos , Peso Corporal , Convulsivantes , Efeitos Psicossociais da Doença , Modelos Animais de Doenças , Composição de Medicamentos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Everolimo/efeitos adversos , Ensaios de Triagem em Larga Escala , Ácido Caínico , Masculino , Fenobarbital/efeitos adversos , Ratos , Ratos Sprague-Dawley , Convulsões/prevenção & controle , Pesquisa Translacional Biomédica
14.
Epilepsy Behav ; 117: 107850, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33631435

RESUMO

OBJECTIVE: To identify and describe studies about pharmacist-provided services for people with epilepsy and their caregivers. METHODS: PubMed/MEDLINE and EMBASE were searched for articles that were: (1) written in English, (2) published in 1985 or later, (3) a peer-reviewed empirical study or practice report, and (4) describing an intervention provided by a pharmacist for people with epilepsy and/or their caregivers in an outpatient pharmacy setting. The abstracts and full text, when necessary, were reviewed by two investigators to assess eligibility. Data were extracted from each article by two investigators using a standardized abstraction form based on the Pharmacist Patient Care Services Intervention Reporting (PaCIR) checklist. Data elements of interest included components of service, mode of service delivery, frequency, number and duration of sessions for the service, roles and responsibilities of the community pharmacist, type of community pharmacy, outcomes and measures evaluated along with data sources, and findings and results. Risk of bias was not assessed due to the descriptive nature of the review. RESULTS: Twelve articles were included, seven of which reported services conducted in the United States. The most common service reported was medication management (n = 7) followed by education and counseling (n = 4). One article described a care coordination documentation tool that could be used by pharmacists and physicians in epilepsy care. Most interventions were evaluated using observational designs (n = 5) or did not have an evaluation component (n = 4). SIGNIFICANCE: This review provides examples of community pharmacists providing care to people living with epilepsy that extend beyond dispensing medications. Findings demonstrate that there is little published evidence on community pharmacists' contributions to epilepsy care and suggest opportunities for further exploration and innovation. This review serves as the first step in a project that seeks to develop a stakeholder-driven community pharmacist integrated population health intervention for people living with epilepsy.


Assuntos
Serviços Comunitários de Farmácia , Epilepsia , Farmácias , Aconselhamento , Epilepsia/terapia , Humanos , Farmacêuticos , Papel Profissional
15.
Epilepsia ; 61(11): 2329-2339, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33063849

RESUMO

Approximately one-third of people living with epilepsy are unable to obtain seizure control with the currently marketed antiseizure medications (ASMs), creating a need for novel therapeutics with new mechanisms of action. Cenobamate (CBM) is a tetrazole alkyl carbamate derivative that received US Food and Drug Administration approval in 2019 for the treatment of adult partial onset (focal) seizures. Although CBM displayed impressive seizure reduction in clinical trials across all seizure types, including focal aware motor, focal impaired awareness, and focal to bilateral tonic-clonic seizures, the precise mechanism(s) through which CBM exerts its broad-spectrum antiseizure effects is not known. Experimental evidence suggests that CBM differentiates itself from other ASMs in that it appears to possess dual modes of action (MOAs); that is, it predominately blocks persistent sodium currents and increases both phasic and tonic γ-aminobutyric acid (GABA) inhibition. In this review, we analyze the preclinical efficacy of CBM alongside ASMs with similar MOAs to better understand the mechanism(s) through which CBM achieves such broad-spectrum seizure protection. CBM's preclinical performance in tests, including the mouse 6-Hz model of treatment-resistant seizures, the chemoconvulsant seizure models of generalized epilepsy, and the rat hippocampal kindling model of focal epilepsy, was distinct from other voltage-gated sodium channel blockers and GABAA modulators. This distinction, in light of its proposed mechanism(s) of action, provides insight into the impressive clinical efficacy of CBM in the adult patient with focal onset epilepsy. The results of this comparative reverse translational analysis suggest that CBM is a mechanistically distinct ASM that offers an important advancement in drug development for treatment of therapy-resistant epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Clorofenóis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Convulsões/tratamento farmacológico , Tetrazóis/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Convulsões/diagnóstico , Convulsões/fisiopatologia
16.
Epilepsia ; 61(9): 2022-2034, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757210

RESUMO

OBJECTIVE: Initial identification of new investigational drugs for the treatment of epilepsy is commonly conducted in well-established mouse acute and chronic seizure models: for example, maximal electroshock (MES), 6 Hz, and corneal kindling. Comparison of the median effective dose (ED50) of approved antiseizure drugs (ASDs) vs investigational agents in these models provides evidence of their potential for clinical efficacy. Inbred and outbred mouse strains exhibit differential seizure susceptibility. However, few comparisons exist of the ED50 or median behaviorally impairing dose (TD50) of prototype ASDs in these models in inbred C57Bl/6 vs outbred CF-1 mice, both of which are often used for ASD discovery. METHODS: We defined the strain-related ED50s and TD50s of several mechanistically distinct ASDs across established acute seizure models (MES, 6 Hz, and corneal-kindled mouse). We further quantified the strain-related effect of the MES ED50 of each ASD on gross behavior in a locomotor activity assay. Finally, we describe a novel pharmacoresistant corneal-kindling protocol that is suitable for moderate-throughput ASD screening and demonstrates highly differentiated ASD sensitivity. RESULTS: We report significant strain-related differences in the MES ED50 of valproic acid (CF-1 ED50: 90 mg/kg [95% confidence interval (CI) 165-214] vs C57Bl/6: 276 mg/kg [226-366]), as well as significant differences in the ED50 of levetiracetam in the pharmacoresistant 6 Hz test (CF-1: 22.5 mg/kg [14.7-30.2] vs C57Bl/6: >500 mg/kg [CI not defined]). There were no differences in the calculated TD50 of these ASDs between strains. Furthermore, the MES ED50 of phenobarbital significantly enhanced locomotor activity of outbred CF-1, but not C57Bl/6, mice. SIGNIFICANCE: Altogether, this study provides strain-related information to differentiate investigational agents from ASD standards-of-care in commonly employed preclinical discovery models and describes a novel kindled seizure model to further explore the mechanisms of drug-resistant epilepsy.


Assuntos
Animais não Endogâmicos , Anticonvulsivantes/farmacologia , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/fisiopatologia , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Convulsões/fisiopatologia , Animais , Anticonvulsivantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Córnea , Diazepam/farmacologia , Diazepam/uso terapêutico , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Eletrochoque , Excitação Neurológica , Lamotrigina/farmacologia , Lamotrigina/uso terapêutico , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Camundongos , Camundongos Endogâmicos , Teste de Campo Aberto , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Convulsões/tratamento farmacológico , Resultado do Tratamento , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
17.
Epilepsia ; 61(11): 2340-2364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33190243

RESUMO

Since 1992, the Eilat Conferences have provided a forum for all stakeholders in the epilepsy community to appraise the latest data on new antiepileptic drugs and emergency seizure treatments, including, in recent years, updates on progress with the development of novel monitoring and therapeutic devices. Because of the COVID-19 pandemic, the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV) was held as a fully virtual conference on July 27-30, 2020 for the sessions on drugs and on August 3, 2020 for the sessions on devices, and was attended during the 5 days by >500 participants from 63 countries. This progress report summarizes key preclinical and initial (phase 1) clinical data on eight investigational treatments that are currently in early development, including 2-deoxy-D-glucose, GAO-3-02, JNJ-40411813, NBI-921352, NTX-001, sec-butylpropylacetamide, XEN1101, and XEN496. This report provides an overview of current scenarios in the area of treatment discovery and development. The information presented illustrates a variety of innovative strategies, including exploration of compounds with novel mechanisms of action, transplantation of interneurons into epileptogenic brain regions, and the targeting of rare, previously neglected syndromes.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/terapia , Interneurônios/transplante , Animais , Humanos
18.
Epilepsia ; 61(11): 2365-2385, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33165915

RESUMO

The Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV) was held as a fully virtual conference from July 27 to July 30, 2020 for the sessions on drugs, and on August 3, 2020 for the sessions on devices. A total of 534 delegates from 63 countries attended lectures and interactive discussions, representing a broad range of disciplines from basic science, clinical research, and clinical care. This progress report provides summaries of recent findings on investigational compounds for which preclinical data as well as data from patient studies were presented. The report includes the following five compounds: anakinra, cenobamate, CVL-865, fenfluramine, and ganaxolone, all with novel modes of action compared to more established antiepileptic drugs. Some of these compounds demonstrated promising results in placebo-controlled phase 3 trials, and two have recently received approval from the US Food and Drug Administration (FDA). These include cenobamate, which was approved by the FDA on November 21, 2019 for the treatment of partial onset (focal) seizures in adults, and fenfluramine oral solution, which was approved by the FDA on June 25, 2020 for the treatment of seizures associated with Dravet syndrome in patients 2 years and older.


Assuntos
Anticonvulsivantes/uso terapêutico , Congressos como Assunto/tendências , Desenvolvimento de Medicamentos/tendências , Drogas em Investigação/uso terapêutico , Epilepsia/tratamento farmacológico , Relatório de Pesquisa/tendências , Animais , Desenvolvimento de Medicamentos/métodos , Epilepsia/epidemiologia , Humanos , Estados Unidos/epidemiologia
19.
Epilepsia ; 61(10): 2106-2118, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32797628

RESUMO

OBJECTIVE: Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS: We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS: Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE: These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Descoberta de Drogas/métodos , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/uso terapêutico , Receptores de GABA-A/metabolismo , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Descoberta de Drogas/tendências , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Convulsões/genética , Convulsões/metabolismo , Especificidade da Espécie , Timol/química , Timol/farmacologia , Timol/uso terapêutico , Peixe-Zebra
20.
Neurochem Res ; 45(7): 1551-1565, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32248400

RESUMO

Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine (Gabitril®). Synergistic anti-seizure effects achieved by inhibition of both GAT1 and the betaine/GABA transporter (BGT1) by tiagabine and EF1502, compared to tiagabine alone, suggest BGT1 as a target in epilepsy. Yet, selective BGT1 inhibitors are needed for validation of this hypothesis. In that search, a series of BGT1 inhibitors typified by (1R,2S)-2-((4,4-bis(3-methylthiophen-2-yl)but-3-en-yl)(methyl)amino)cyclohexanecarboxylic acid (SBV2-114) was developed. A thorough pharmacological characterization of SBV2-114 using a cell-based [3H]GABA uptake assay at heterologously expressed BGT1, revealed an elusive biphasic inhibition profile with two IC50 values (4.7 and 556 µM). The biphasic profile was common for this structural class of compounds, including EF1502, and was confirmed in the MDCK II cell line endogenously expressing BGT1. The possibility of two binding sites for SBV2-114 at BGT1 was assessed by computational docking studies and examined by mutational studies. These investigations confirmed that the conserved residue Q299 in BGT1 is involved in, but not solely responsible for the biphasic inhibition profile of SBV2-114. Animal studies revealed anti-seizure effects of SBV2-114 in two mouse models, supporting a function of BGT1 in epilepsy. However, as SBV2-114 is apparent to be rather non-selective for BGT1, the translational relevance of this observation is unknown. Nevertheless, SBV2-114 constitutes a valuable tool compound to study the molecular mechanism of an emerging biphasic profile of BGT1-mediated GABA transport and the putative involvement of two binding sites for this class of compounds.


Assuntos
Anticonvulsivantes/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Estimulação Acústica/efeitos adversos , Animais , Anticonvulsivantes/farmacologia , Células CHO , Cricetulus , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Convulsões/etiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA